
Cassie Crossley
Foreword by Emily Heath

Software
Supply Chain
Security
Securing the End-to-End
Supply Chain for
Software, Firmware,
and Hardware

C
rossley

Softw
a

re Sup
p

ly C
ha

in Security
Softw

a
re Sup

p
ly C

ha
in Security

SECURIT Y

“For any policy maker
looking for sustainable
solutions to securing
our software, this book
serves as a great desk
reference to understand
our software supply
chains, the foundational
standards upon which
they are built, and
the risks associated
with them.”

—Kemba Walden
Former Acting National Cyber Director,

The White House

“Cassie is a known expert
in software supply chain
security, and this book
provides clear, actionable
guidance when the
industry is rapidly evolving
and in need of wisdom.”

—Christine Gadsby
Vice President, Product Security,

Blackberry

Software Supply
Chain Security

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Trillions of lines of code help us in our lives, companies,
and organizations. But just a single software cybersecurity
vulnerability can stop entire companies from doing business
and cause billions of dollars in revenue loss and business
recovery. Securing the creation and deployment of software,
also known as software supply chain security, goes well
beyond the software development process.

This practical book gives you a comprehensive look at
security risks and identifies the practical controls you
need to incorporate into your end-to-end software supply
chain. Author Cassie Crossley demonstrates how and why
everyone involved in the supply chain must participate if
your organization is to improve the security posture of
its software, firmware, and hardware.

With this book, you’ll learn how to:

• Pinpoint the cybersecurity risks in each part of your
organization’s software supply chain

• Identify the roles that participate in the supply chain—
including IT, development, operations, manufacturing,
and procurement

• Design initiatives and controls for each part of the
supply chain using existing frameworks and references

• Implement secure development lifecycle, source code
security, software build management, and software
transparency practices

• Evaluate third-party risk in your supply chain

Cassie Crossley is a cybersecurity
technology executive in IT and
product development with years
of business and technical
leadership experience.

US $55.99 CAN $69.99
ISBN: 978-1-098-13370-2

Praise for Software Supply Chain Security

Supply chain security is top of mind for all manufacturing companies; therefore, this
book is definitely a reference for those who want to address this systematic risk.

—Christophe Blassiau, Cybersecurity and Product Security SVP,
Global CISO and CPSO, Schneider Electric

Software touches everything: water, food, electricity, timely patient care. As society
increasingly depends upon software, it increasingly depends upon those who produce it.

Ready or not, transparency is coming. Where others have made excuses, Cassie has
made progress advancing software trust and transparency, and now you can too.

—Josh Corman, Father of SBOM and Founder of
public safety initiative, I Am the Cavalry

Cassie has been a pioneer in advocating for and advancing SBOM, particularly in critical
infrastructure. This volume is a critical contribution that underscores the need for

software transparency and highlights paths to implementation.
—Allan Friedman, PhD in public policy, SBOM champion

Cassie is a known expert in software supply chain security, and this book provides clear,
actionable guidance when the industry is rapidly evolving and in need of wisdom.

—Christine Gadsby, Vice President, Product Security, Blackberry

In today’s generative AI world, every company is a software company and is impacted
by the software supply chain security. This book is a game-changer. This is a

must-read guide designed to enlighten CEOs and board members alike.
—Nikhil Gupta, Founder and CEO, ArmorCode Inc.

Cassie has written a book that is comprehensive, detailed, technical, and easily readable. It
is an excellent overview for beginners but very useful to cybersecurity pros on how the

brave new world of software supply chains can be exploited—and defended.
—Charles Hart, Senior Analyst, Hitachi America, Ltd.

Cassie Crossley has been in the trenches of supply chain security and
understands the real-world operational, legal, and financial challenges

in a way that academics and bureaucrats don’t always grasp.
—JC Herz, SVP Exiger Cyber Supply Chain

Cassie brings a wealth of knowledge to this book, covering relevant attack vectors,
emerging frameworks, vulnerability disclosures, products, open source,

third-party suppliers and navigating the complex human element,
all too often overlooked in software supply chain security.

—Chris Hughes, President and Cofounder, Aquia;
Cyber Innovation Fellow (CIF) at CISA; Coauthor of Software Transparency

Cassie’s book is the most thorough, practical, organized, and actionable supply chain
advice I’ve ever received. Via frameworks and detailed plans, this book

lays out exactly what to do to ensure your entire product
supply chain (physical or digital) is reliably secure.

—Tanya Janca (SheHacksPurple), Head of Community and
Education, Semgrep; Author of Alice and Bob Learn Application Security

Securing software supply chains is complex and confusing. Cassie comprehensively
addresses this with an experienced practitioner’s eye. This is a phenomenal

resource for understanding the risks and how to address them.
Technology and business leaders alike will benefit from this!

—Kent Landfield, Chief Standards and
Technology Policy Strategist, Trellix

Software supply chain management requires more than an SBOM.
Regulations, legislation, development models, and deployment decisions make

the real world complex. Cassie does a fantastic job simplifying this complexity and
providing actionable guidance to address your supply chain risks.

—Tim Mackey, Head of Software Supply Chain
Risk Strategy, Synopsys

Software Supply Chain Security delves deep into the critical role of software supply chain
security, revealing the pivotal importance it plays in safeguarding organizations.

The book is well organized, making it an effective reference tool.
—Leda Muller, Chief Information and Privacy Officer,

Stanford University, Residential and Dining Enterprises

Authored by a pioneer who inspired me to create the first-ever solution to manage and
share SBOMs, this book is a treasure of expertise for product security professionals.

It’s destined to become a pivotal reference for software supply chain security.
—Dmitry Raidman, Cofounder and CTO, Cybeats;

Cofounder, Security Architecture Podcast

During a time of ever-increasing threats to our systems, this book serves as
a practical guide for any organization looking to include software
supply chain security as part of their risk management program.

—Grant Schneider, Former US Federal
Chief Information Security Officer

In the last few years, industry has woken up to the need for software transparency.
This book does an excellent job of summarizing the current landscape and

providing context for those trying to improve best practices for managing risk.
—Kate Stewart, Vice President of

Dependable Embedded Systems, The Linux Foundation

Cassie offers a thorough and global perspective on supply chain security,
expertly covering regulatory, risk frameworks, software, hardware, and more,

distinguishing itself from other US-centric texts. I highly recommend
this book to anyone looking to reduce unverified trust in their supply chains.

—Tony Turner, Founder and CEO, Opswright;
Coauthor of Software Transparency

For any policy maker looking for sustainable solutions to securing our software,
this book serves as a great desk reference to understand our software supply chains,

the foundational standards upon which they are built, and the risks associated with them.
—Kemba Walden, Former Acting National Cyber Director,

The White House

Cassie Crossley

Software Supply Chain Security
Securing the End-to-End Supply Chain
for Software, Firmware, and Hardware

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13370-2

[LSI]

Software Supply Chain Security
by Cassie Crossley

Copyright © 2024 Cassaundra Crossley. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Rita Fernando
Production Editor: Elizabeth Faerm
Copyeditor: nSight, Inc.
Proofreader: J.M. Olejarz

Indexer: Ellen Troutman-Zaig
Interior Designer: Monica Kamsvaag
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

February 2024: First Edition

Revision History for the First Edition
2024-02-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098133702 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Software Supply Chain Security, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098133702

Table of Contents

Foreword. xiii

Preface. xvii

1. Supply Chain Security. 1
Supply Chain Definitions 2
Software Supply Chain Security Impacts 3
Requirements, Laws, Regulations, and Directives 5
Summary 10

2. Supply Chain Frameworks and Standards. 15
Technology Risk Management Frameworks 16

NIST SP 800-37 Risk Management Framework (RMF) 16
ISO 31000:2018 Risk Management 18
Control Objectives for Information and

Related Technologies (COBIT®) 2019 22
NIST Cybersecurity Framework (CSF) 24

Supply Chain Frameworks and Standards 26
NIST SP 800-161 Cybersecurity Supply Chain Risk Management

for Systems and Organizations 26
UK Supplier Assurance Framework 31
MITRE System of Trust™ (SoT) Framework 32
ISO/IEC 20243-1:2023 Open Trusted Technology Provider Standard 33
SCS 9001 Supply Chain Security Standard 33
ISO 28000:2022 Security and Resilience 34
ISO/IEC 27036 Information Security for Supplier Relationships 34

vii

Framework and Standards Considerations Summary 35
Summary 35

3. Infrastructure Security in the Product Lifecycle. 39
Developer Environments 40
Code Repositories and Build Platforms 42
Development Tools 44
Labs and Test Environments 46
Preproduction and Production Environments 48
Software Distribution and Deployment Locations 48
Manufacturing and Supply Chain Environments 50
Customer Staging for Acceptance Tests 51
Service Systems and Tools 52
Summary 52

4. Secure Development Lifecycle. 55
Key Elements of an SDL 56

Security Requirements 56
Secure Design 58
Secure Development 59
Security Testing 59
Vulnerability Management 60

Augmenting an SDLC with SDL 62
ISA/IEC 62443-4-1 Secure Development Lifecycle 62
NIST SSDF 64
Microsoft SDL 64
ISO/IEC 27034 Application Security 65
SAFECode 67
SDL Considerations for IoT, OT, and Embedded Systems 67

Product and Application Security Metrics 68
Summary 69

5. Source Code, Build, and Deployment Management. 73
Source Code Types 73

Open Source 74
Commercial 76
Proprietary 76
Operating Systems and Frameworks 76
Low-Code/No-Code 77
Generative AI Source Code 77

viii | Table of Contents

Code Quality 78
Secure Coding Standards 78
Software Analysis Technologies 79
Code Reviews 80

Source Code Integrity 81
Change Management 82
Trusted Source Code 82
Trusted Dependencies 84

Build Management 85
Authentication and Authorization 85
Build Scripts and Automation 85
Repeatability and Reproducibility 86
Code Signing 86

Deployment Management 87
Summary 89

6. Cloud and DevSecOps. 93
Cloud Frameworks, Controls, and Assessments 95

ISO/IEC 27001 Information Security Management Systems 95
Cloud Security Alliance CCM and CAIQ 96
Cloud Security Alliance STAR Program 97
American Institute of CPAs SOC 2 98
US FedRAMP 98
Cloud Security Considerations and Requirements 99

DevSecOps 101
Change Management for Cloud 101
Secure Design and Development for Cloud Applications 103
API Security 104
Testing 105
Deploying Immutable Infrastructure and Applications 105
Securing Connections 106
Operating and Monitoring 107
Site Reliability Engineering 108

Summary 108

7. Intellectual Property and Data. 111
Data Classification 112
People 113
Technology 114

Data Security 115

Table of Contents | ix

Loss of Code, Keys, and Secrets 117
Design Flaws 118
Configuration Errors 119
Application Programming Interfaces (APIs) 120
Vulnerabilities 121

Summary 121

8. Software Transparency. 125
Software Transparency Use Cases 127
Software Bill of Materials (SBOM) 131

SBOM Formats 133
SBOM Elements 134
SBOM Limitations 135
Additional Bill of Materials (BOMs) 137

Vulnerability Disclosures 137
Additional Transparency Approaches 139

US CISA Secure Software Development Attestation Common Form 139
Supply Chain Integrity, Transparency, and Trust (SCITT) 140
Digital Bill of Materials and Sharing Mechanisms 140
Graph of Understanding Artifact Composition (GUAC) 142
In-Toto Attestation 143
Software Provenance 143
Practices and Technology 145

Summary 146

9. Suppliers. 149
Cyber Assessments 151

Assessment Responses 152
Research 153
IT Security Including Environmental Security 153
Product/Application Security Organization 154
Product Security Processes and Secure Development Lifecycle 155
Training 156
Secure Development and Security Testing 156
Build Management, DevSecOps, and Release Management 157
Scanning, Vulnerability Management, Patching, and SLAs 157
Cloud Applications and Environments 158
Development Services 159
Manufacturing 159

Cyber Agreements, Contracts, and Addendums 160

x | Table of Contents

Ongoing Supplier Management 162
Monitoring 163
Supplier Reviews 163
Right to Audit and Assess 164

Summary 164

10. Manufacturing and Device Security. 167
Suppliers and Manufacturing Security 168

Equipment, Systems, and Network Security Configurations 170
Physical Security 172

Code, Software, and Firmware Integrity 172
Tests for Integrity 173
Counterfeits 174

Chain of Custody 175
Device Protection Measures 175

Firmware Public Key Infrastructure (PKI) 176
Hardware Root of Trust 176
Secure Boot 176
Secure Element 177
Device Authentication 177

Summary 177

11. People in the Software Supply Chain. 179
Cybersecurity Organizational Structures 180
Security Champions 181
Cybersecurity Awareness and Training 182
Development Team 183

Secure Development Lifecycle (SDL) 183
Source Code Management 184
DevSecOps and Cloud 185
Capture-the-Flag Events 185

Third-Party Suppliers 186
Manufacturing and Distribution 186
Customer Projects and Field Services 187
End Users 187
Summary 188

Appendix: Security Controls. 191

Index. 199

Table of Contents | xi

Foreword

The way we work has changed significantly over recent years with the adoption of
cloud technologies that drive business strategy, artificial intelligence that brings data
to life in ways we never thought possible, and compute power at everyone’s fingertips
that allows us to do more.

This change has been made possible by the underlying ecosystem of technology that
is embedded in every area of our lives. Every device, vehicle, hospital, school, office,
and home is driven by technology. This technology has an inherent supply chain of
software, hardware, and firmware components to make it work and connect to our
daily lives.

The supply chain is seamless to most, but not to those who are tasked with protecting
it. It’s a magnificent evolution of technology that has changed how we live. It is there‐
fore no surprise that the way in which we design, develop, and operate these technol‐
ogies must also evolve. That comes with great responsibility to ensure we keep our
technology safe and secure from cyberattacks that could cause anything from data
exposure to operational failure to revenue impacts to loss of life.

As with any revolution, the pendulum can sometimes swing too far one way before
normalizing over time. The inflection point between innovation and regulation, pull‐
ing from opposite ends of the spectrum, is a balance we must get right. The supply
chain evolution has seen changes in many laws and regulations over the years, rang‐
ing from federal regulations to international laws that govern the software develop‐
ment lifecycle. These kinds of laws are important, yet they cannot hinder our ability
to innovate and operate.

xiii

We must apply them with a practical lens. As with most aspects of security, there are
many frameworks designed to ensure controls are in place to protect us from the
array of threats we face. Those developed for software development lifecycles give
great guidance to a subject that is often misunderstood. Building them into day-to-
day practices and leveraging them as an enabler, rather than a hindrance, is very
important to the continuity of business.

Before I went into technology, I was a fraud detective in England for many years. As a
young recruit, I remember one of my police trainers telling me to “never forget we are
all in the people business.” How true that statement has been throughout my career,
and how true that is for cybersecurity professionals, who are almost 100% reliant on
someone else doing something for them to succeed.

As a former chief information security officer (CISO) of Fortune 500 companies with
vastly different technology supply chains, from buildings to aircraft to software prod‐
ucts, I understand the challenges of bringing the many teams together to align on
how to tackle these responsibilities. It is a complex ecosystem that needs dedicated
focus at every step. Having continuity, integrity, and transparency across your tech‐
nology supply chain is critical. And as my former police trainer would be proud to
hear me say, the people are critical too.

Security is not the job of one person or team alone; it is the job of everyone.

What Cassie has brought together in this book is a thoughtful, end-to-end guide of all
the moving pieces and considerations that technology and security teams must think
about as they build out their products or services. It is a practical blueprint for how to
design and implement your security programs with modern supply chain risks in
mind, whether you are in software development, manufacturing, critical infrastruc‐
ture, or anything in between.

Cassie is one of the very few experts in her craft and draws from her years of hands-
on experience managing these processes for complex organizations. She is skilled in
managing the broader scope of supply chain risk that has extended beyond a compa‐
ny’s own four walls. Supply chain risk must be considered at all levels of your opera‐
tion, including who you choose to partner with. Every company is an ecosystem.

The multifaceted responsibility of supply chain security is therefore not just about
what we develop, manufacture, or provide, but is also about the integrity and security
of the partners that are built into our businesses. Third- and fourth-party risks are
our responsibility. Cassie explains the importance of this lens throughout this book.

xiv | Foreword

As a venture capital partner, I now have the privilege of working with some of the
brightest minds in the business who are looking to solve emerging cyber challenges. It
is where innovation meets operation. While the concept of technology supply chain
security is not new, the way we work is. Code is everywhere. Risk is everywhere.

With the right approach to balancing the technical designs and processes, the gover‐
nance needed for transparency and integrity, and the people aspects of what a suc‐
cessful security program looks like, your chances of success are much higher. Cassie’s
willingness to impart her expertise and share it with others exemplifies what makes
the cybersecurity community so strong. We are stronger together.

Stay safe out there!

— Emily Heath
General Partner, Cyberstarts Venture Capital

Board Member, Gen Digital (NASDAQ: GEN)
Board Member, Wiz

Board Member, Logicgate

Foreword | xv

Preface

Software is everywhere. Trillions of lines of source code are running every part of our
lives. A single software vulnerability or ransomware attack can stop entire companies
from doing business and cause billions of dollars in revenue loss and business recov‐
ery. Now, more than ever, we need to ensure that our software, firmware, and hard‐
ware are secure to keep our world up and running, safely and securely.

Malware, security vulnerabilities, application security, and product security are not
new to the software industry, but now these topics have reached mainstream news
because of the effects they have on everyone. My part in this became very real when I
was visiting my family on the US East Coast the week of the Colonial Pipeline attack.1
I spent two hours waiting in line at the sole gas station within 20 miles that had gas,
and then the rest of that afternoon explaining to my family about business continuity
and supply chain attacks.

Supply chains are critical to our lives. According to Investopedia, “a supply chain is a
network of individuals and companies who are involved in creating a product and
delivering it to the consumer.”2 The same is true for software. Software usually is
developed by multiple individuals, who are often part of multiple organizations or
companies. Over time, thousands of developers may have code inside of a single
application. For example, I wrote code for ZSoft’s paint.exe, which was sold to Micro‐
soft in the 1980s. I’m certain there are lines of my code still in existence within MS
Paint on the Microsoft Windows platform. Nearly 40 years later, an untold number of
developers have also contributed their talents to the small, but useful, application.

Ensuring software security within the supply chain is difficult, usually due to the lon‐
gevity of code that was written before secure development and secure design practices
were in place. Combined with the ever-increasing threat actors who are constantly
discovering new ways to exploit code and systems, it will always be difficult to guar‐
antee a product or application’s security, but that should not prevent us from doing
our absolute best to secure the software supply chain.

xvii

Despite the complicated nature of the software supply chain, it is our duty as software
producers to establish secure supply chains and provide information to our consum‐
ers. As consumers, we should use this information to address the risks that the supply
chain might present to our own organizations.

The effort to improve a company’s software supply chain is not small. And it’s not
only a software development process problem: software supply chain security
requires all parties in the supply chain to participate in order to improve the security
posture of software, firmware, and hardware.

In this book, I will show you how to implement a software supply chain security pro‐
gram in an organization of any size, but especially for small companies that don’t have
dedicated application or supply chain security experts. I will explain why each secu‐
rity control exists, without someone needing a computer science or cybersecurity
degree to understand the security risks and the reasons for the controls.

This book is not intended to be an all-encompassing set of controls. You can remove
any controls that are not applicable and add the controls you need to the controls
framework you already have in place. I have included hundreds of references for
those needing to follow mandated frameworks, standards, laws, or regulations. How‐
ever, I must caution you to not limit yourself to those frameworks. You should always
be extending and adapting your controls to meet the current gaps and risks within
your organization.

Who Should Read This Book
This book is for anyone who has been tasked with the security of third parties, the
supply chain, the purchase of products and applications for their organization, open
source software, or software developed within their organization. You may or may
not have “security” in your title. Anyone entrusted with the selection, production,
and operation of software can use this book to understand the risks in the software
supply chain and to implement controls and frameworks. The book doesn’t require a
cybersecurity background, though some areas will be technical in explanation, with
many references to encourage further learning.

I’ve created this practical reference to be understood by business and technology
leaders, as well as those in the legal, procurement, insurance, and supply chain organ‐
izations. This book is also for security program leaders, whether in the role of CISO
(chief information security officer), CPSO (chief product security officer), CSO (chief
security officer), GRC (governance, risk, and compliance), application security, or
product security.

xviii | Preface

Why I Wrote This Book
My software development story began with a visit to my dad’s work at the IBM manu‐
facturing plant in Rochester, Minnesota, in the mid-1970s. My dad was a program‐
mer, and although I didn’t really understand what he did, I knew it had something to
do with making machines that produced interesting and complex things. Years later, I
still find software development to be interesting, complex, and full of nuance. As
someone who has participated as a developer, project manager, and executive leader
in over a thousand releases for consumer and business applications, I understand the
practical nature of releasing quality products on time and on budget. In my roles as
cybersecurity leader and product security leader, I have also held the responsibility
for delivering secure applications, products, systems, and infrastructure for a portfo‐
lio of over 15,000 intelligent products.

What led me to my passion for supply chain security, however, is a result of my work
with the thousands of vendors in our supply chain. For years I have been meeting
with suppliers to discuss their secure development lifecycle, secure testing plans, vul‐
nerability management, third-party risk, and more. These suppliers, who contribute
source code, software libraries, components, products, and services, usually do not
have the resources of a large, multinational corporation. Identifying the key controls
and practices for their specific situation requires an understanding of priorities, risk,
and impacts. It’s a collaboration that is extremely important to me, and I’ve written
this book specifically for organizations that are eager to improve software supply
chain security.

Software supply chain security changes rapidly. No doubt there will be new and
changed frameworks, documents, regulations, ideas, and links before this book is
even published. It is my intention to keep this information as current as possible, so
please feel free to sign up for my newsletter. You can also contact me at cassie@supply‐
chainsecurity.pro to send updates, feedback, and corrections; schedule a meeting; or
request me as a speaker or guest.

Navigating This Book
This book is organized as follows:

• Chapters 1 and 2 provide an introduction to the concepts of software supply
chain security and explanations of the various frameworks and references in sup‐
ply chain risk management.

• Chapter 3 summarizes the various infrastructure security controls that need spe‐
cial attention for software supply chain security.

• Chapter 4 explores the key practices within a secure development lifecycle and
the various frameworks available.

Preface | xix

https://www.supplychainsecurity.pro/sign-up
mailto:cassie@supplychainsecurity.pro
mailto:cassie@supplychainsecurity.pro

• Chapters 5 and 6 describe the various types of source code and how to maintain
their integrity during development, build, deployment, and operations for soft‐
ware, products, infrastructure, and cloud applications.

• Chapter 7 presents the security risks regarding intellectual property of source
code and any data used in the supply chain.

• Chapter 8 discusses the transparency of the products and services through a soft‐
ware bill of materials and vulnerability disclosures.

• Chapter 9 prepares organizations to perform assessments for and manage cyber
agreements with third-party suppliers.

• Chapter 10 specifies risks and controls for products that navigate through
upstream processes such as manufacturing, logistics, or customer projects before
reaching the consumer.

• Chapter 11 focuses on the risks introduced by people in the supply chain, and
how to address those risks with awareness and training.

Within most chapters of this book and compiled in an appendix at the end, I also
provide nearly 80 controls specifically focused on software supply chain security. You
can add, remove, modify, or align these controls to the needs of your organization.
The controls are available for download when you sign up for my newsletter.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

xx | Preface

https://supplychainsecurity.pro/sign-up
https://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/software-supply-chain-security.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
I would like to express my sincere gratitude to my wonderful husband Craig and my
amazing daughter Emma for providing me time alone to write and edit this book for
the past year and a half. I want to thank Craig, Emma, my other amazing daughter
Evelyn, my mom Carol, my sister Suzie, my brother Kelly, my best friend Amanda
Jackson, as well as all my dear family, friends, and colleagues for their significant sup‐
port and encouragement. Your excitement to see this book become a reality was very
important and uplifting to me.

I would like to thank Charles Hart, Robert Lembree, and Kunal Bhattacharya for their
countless hours reviewing and providing excellent suggestions to the chapters. If you
ever need anything, I will be there for you.

Preface | xxi

https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/software-supply-chain-security
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

I am so very grateful to Emily Heath for writing the foreword. She is an incredible
inspiration and a rock star in cybersecurity. I’d also like to thank Luc Poulin for the
assistance on “ISO/IEC 27034 Application Security” on page 65, Dr. Allan Friedman
for all things SBOM, and the many folks in the SBOM communities, including Dun‐
can Sparrell, Tom Alrich, Dmitry Raidman, Chris Blask, Audra Hatch, and Josh
Corman.

I would like to thank my incredible current and past colleagues for their support,
including Klaus Jaeckle, Christophe Blassiau, Sheila Casserly, Patrick Ford, Trevor
Rudolph, Anne Marie van den Hurk, Mansur Abilkasimov, Megan Samford, Paul
Forney, Matthieu Adam, Hussain Mujtaba, Dwaraka Atri, Paula Berger, and so many
others. I’d also like to thank the Purple Book community members, who are the great‐
est application security leaders in technology, led by Nikhil Gupta and Lingraj Patil.
Without the Purple Book, I would not have met so many brilliant people, including
Mike Barlow, who introduced me to the editors at O’Reilly Media.

And my final thank you is to everyone at O’Reilly Media and to the greatest cheer‐
leader and editor, Rita Fernando. She was so professional and understanding about
the timelines and writing process. Her smile always gave me comfort, even when I
was stressed.

I dedicate this book to my dad, James Forrest Crossley. He was a pioneer and patent
holder in technology, but to me he was just a nerdy geek who believed his children
could do anything.

References
1 Charlie Osborne, “Colonial Pipeline Attack: Everything You Need to Know”,
ZDNET, May 13, 2021.

2 Adam Hayes, “The Supply Chain: From Raw Materials to Order Fulfillment”,
Investopedia, March 28, 2023.

xxii | Preface

https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you-need-to-know
https://www.investopedia.com/terms/s/supplychain.asp

CHAPTER 1

Supply Chain Security

When you purchase something, the product you purchase usually has had a long
journey from its original idea to the moment of delivery, as shown in Figure 1-1. You
may recognize that the supply chain involves many participants in the item’s journey,
but you may not realize how many opportunities exist for something to happen as
that item moves along the path. Supply chain security has been part of our existence
for thousands of years, such as when spices were carried from East to West, when
ships moved goods between continents during colonization, or when military troops
transported food and weapons during world wars. In all those situations, people pre‐
pared for attacks and defended their supplies so the items could make it to their
intended destination.

Figure 1-1. Traditional supply chain

After all this time, supply chain attacks have evolved and defense mechanisms must adapt
to these changes. These attacks can be on individual products, as was the case when seven
people were murdered in 1982 from poisoned Tylenol medicine capsules.1 The follow-on
regulations mandating tamper-evident packaging for medicine, food, and drinks in the
United States has been repeated throughout the world. Organizations have taken great
care in defending their logistics from distribution attacks, but now the attackers have
moved earlier in the supply chain by attacking the design, development, and manufactur‐
ing processes or by attacking an organization’s operations through ransomware attacks,
data breaches, and theft of intellectual property. Regardless of the method of attack, when

1

an organization cannot distribute products or services to customers, the supply chain is
disrupted. Supply chain attacks have now become global, general-interest media stories
after the ransomware attack on Colonial Pipeline disrupted travel and shipping in the
eastern US for several days.2 The impact that ransomware and other malicious attacks
have on the supply chains of our products and services every day leads me to the reason
for writing this book on supply chain security for software, firmware, and hardware.

The goal of this chapter is to provide you with a foundation to build upon as you read
the rest of the book. I start with defining common supply chain concepts so you have
an understanding of the terminology that I use throughout the book. I then describe
the impacts of supply chain security on organizations and finish by referencing the
many worldwide regulations, laws, and guidelines that focus on supply chain security.

Supply Chain Definitions
When I speak with people about supply chain security, they often do not recognize
themselves as part of a supply chain because they think it’s only about suppliers or
manufacturing. If your organization provides products or services to others, your
organization is part of the supply chain. To provide clarity, the following are defini‐
tions for the core terminology that I will be using throughout this book:

Supply chain
The people, processes, materials, and technologies used in the creation, produc‐
tion, and distribution of physical or digital products. Thousands of individuals,
hundreds of components, and dozens of organizations may be part of the supply
chain to create, produce, and deliver a single product (physical or nonphysical),
such as a mobile phone or a mobile phone application.

Supply chain risk
“The risk that an adversary may sabotage, maliciously introduce unwanted func‐
tion, or otherwise subvert the design, integrity, manufacturing, production, dis‐
tribution, installation, operation, or maintenance of an item of supply or a system
so as to surveil, deny, disrupt, or otherwise degrade the function, use, or opera‐
tion of a system.”3 This definition demonstrates the many opportunities to intro‐
duce risk to a product’s lifecycle and will be discussed throughout this book.

Supply chain risk management (SCRM)
“A systematic process for managing supply chain risk by identifying susceptibili‐
ties, vulnerabilities, and threats throughout the supply chain and developing mit‐
igation strategies to combat those threats whether presented by the supplier, the
supplied product and its subelements, or the supply chain (e.g., initial produc‐
tion, packaging, handling, storage, transport, mission operation, and disposal).”4

The security controls provided in this book should be part of your organization’s
supply chain risk management program.

2 | Chapter 1: Supply Chain Security

Software supply chain
The people, processes, software libraries, software or firmware components, as
well as technologies used in the creation, development, publication, production,
and distribution of digital products, including intelligent physical products such
as Internet of Things (IoT), Industrial IoT (IIoT), and operational technology
(OT).5 The primary difference to general supply chain security is the software or
firmware development and distribution processes.

Software supply chain security
A systematic process for managing software supply chain risk by identifying sus‐
ceptibilities, vulnerabilities, and threats throughout the software supply chain
and developing mitigation strategies to combat those threats, whether presented
by the supplier, software libraries, software or firmware components, the sup‐
plied product and its subelements, or the supply chain (e.g., initial production,
packaging, handling, storage, transport, mission operation, and disposal). The
primary addition to the supply chain risk management definition is the risk of
software or firmware compromise.

Third-party risk
A risk from external sources such as suppliers, organizations, groups, or individ‐
uals in your supply chain, infrastructure, systems, or processes. This can include
commercial engagements where you purchase items, or free and open source
software (FOSS) and tools.6

Several of the previous definitions come from the National Institute of Standards and
Technology (NIST), which has an extensive glossary in its Computer Security
Resource Center (CSRC).7 Although NIST is a US agency in the Department of Com‐
merce, its mission is to advance measurement science, standards, and technology,
which benefits a global. Many of the references and publications mentioned in this
book come from NIST and its collaboration with industry, other organizations, and
people. I have personally collaborated with NIST on several of the software supply
chain topics discussed in this book.

Software Supply Chain Security Impacts
When I describe supply chain security to people, I always hold up my cell phone and
explain to them there were hundreds, maybe thousands, of opportunities for a mali‐
cious actor to compromise the phone before I purchased it from the store. As shown
in Figure 1-2, the phone is made up of hardware, firmware, and software, and anyone
who created my phone or came in contact with it could have put a compromised chip
or software into it. I trust my cell phone manufacturer and the operating system
publisher, but imagine if malicious software (malware) went unnoticed and millions
of phones were impacted before it was discovered. This compromise in the supply

Software Supply Chain Security Impacts | 3

chain would be detrimental not only to the company but also to millions of custom‐
ers. A severe enough event could destroy a company of almost any size.

Figure 1-2. Cell phone hardware, firmware, and software

Now imagine that your organization was one of the upstream suppliers that wrote the
operating system software, or designed the Bluetooth antenna hardware chip, or
assembled the phone’s components. As a supplier to the cell phone manufacturer,
your organization may be found at fault if you don’t have strong supply chain secu‐
rity. It could result in a severe financial impact to the organization and its employees,
possibly leading to the organization’s closure.

You may be on the other end of the supply chain as a downstream customer who pur‐
chased thousands of these cell phones for your organization. Were you familiar
enough with software supply chain security to have evaluated the manufacturer, set
internal policies as to how your employees used the cell phones, and monitored the
software security for potential compromises? Understanding the risks of software
supply chain security will allow you to prepare yourself and your organization for
when, not if, the supply chain will be compromised.

When the infamous software compromise affected the SolarWinds Orion platform (a
widely used IP network management tool), it raised awareness of software supply
chain security, just as the Colonial Pipeline event previously raised awareness of sup‐
ply chain security. Technical details on the SolarWinds attack will be discussed in
Chapter 5, but in summary, the supply chain compromise began in October 2019 and
remained undetected until December 2020, by then placing 18,000 customers at risk,
with Microsoft confirming 40 customers were breached, including a number of US
government agencies.8,9 The SolarWinds organization settled a $26 million lawsuit
with its investors due to the financial losses stemming from the supply chain attack.10

This loss does not include the millions spent by SolarWinds and its customers on

4 | Chapter 1: Supply Chain Security

incident response, threat investigations, downtime, remediations, and loss of revenue
when customers’ systems were unavailable.

Third-party risks from commercially purchased or open source software libraries can
also cause significant impacts worldwide. Two software vulnerabilities (security
weaknesses that can be exploited by a malicious actor or software) announced in
December 2021 in the Apache Log4j logging framework can be found in hundreds of
thousands of open source packages, according to an article published by SC Media.11
The math indicates there are millions of applications using the Log4j open source
libraries, and many of these applications have not yet upgraded the software libraries
to a version where the vulnerabilities have been patched. In the SC Media article, the
author, Menghan Xiao, noted cost estimates to locate Log4j vulnerabilities range
between $33,000 and $90,000. Multiplied by millions of applications, the financial
impact is quite high, especially since this does not yet include any breach or legal
costs for applications that do not patch Log4j. A user may not even be aware these
vulnerabilities exist in their software applications if the software publisher has not
disclosed (announced) the vulnerabilities or provided a list of software components
using a software bill of materials (SBOM), as I will discuss in Chapter 8.

Impacts to an organization from supply chain attacks may result in reputational dam‐
age, loss of customer confidence, lawsuits, government penalties, and a reduction of
future business after the event. An attack also can cause disruptions or downtime to
an organization’s business operations, which could cause loss of revenue. If something
doesn’t work, it can’t make money. Also, as a result of the attack, there will need to be
incident response, threat investigations, and remediations, which take up time and
use resources. Software supply chain security attacks affect not only the company and
its direct customers but also those at the nth degree of separation.

Requirements, Laws, Regulations, and Directives
The risks and impacts to users, organizations, national infrastructure, and global
economies have triggered governments around the world to release requirements,
laws, regulations, directives, and guidance for organizations to follow in regard to
software supply chain security. Many of these requirements pertain to third-party
risk, supply chain risk management, and software development. Table 1-1 contains a
summary of supply chain security references in worldwide laws, regulations, guid‐
ance, and directives at the time of this book’s publication. The documents referenced
in this table are the basis for the software supply chain risks and controls throughout
this book.

Requirements, Laws, Regulations, and Directives | 5

Table 1-1. Government mentions relevant for supply chain security

Location Document Supply chain security mentions
Australia Guidance: Cyber Supply

Chain Risk Management12
• Identify the cyber supply chain, understand the risk, set expectations,

audit for compliance, monitor and improve.

Australia Guidance: Identifying Cyber
Supply Chain Risks13

• Foreign control, influence, and interference.
• Cyber supply chain risks.
• Security practices, transparency, access, and privileges.

Australia Critical Technology Supply
Chain Principles14

• Ten principles grouped into three pillars: security-by-design,
transparency, and autonomy and integrity.

• Know your suppliers, what needs to be protected, and your transparency
requirements.

Australia Security of Critical
Infrastructure Act 201815

• Vulnerability assessments and incident management.

China GB/T 36637—2018
(Information Security
Technology ICT Supply Chain
Security Risk Management
Guidelines)16

• Chinese technical standard on supply chain security for Information and
Communication Technology (ICT).

China New Measures for
Cybersecurity Review17

• Cybersecurity reviews of data processing, network products, or services
for critical infrastructure information and network platform operators.

China National Standard on
Information Security
Technology Software Supply
Chain Security Requirements
(proposed)18

• Security requirements, security testing, and evaluation for the software
supply chain.

• Organizational management and supply activity management
requirements, including personnel, intellectual property, and delivery.

• Derived from GB/T 36637—2018 (Information Security Technology ICT
Supply Chain Security Risk Management Guidelines).

EU GDPR: General Data
Protection Regulation19

• Parties to ensure data rights are enforced.
• Compliance to security standards.
• Liability for data processing leaks.

EU Cybersecurity Act20 • Mutual Recognition Agreements between governments for conformity
assessments, conformity marks, certificates, and test reports by
conformity assessment bodies.

EU Cyber Resilience Act21 • Digital elements are developed in a secure manner and have timely
security updates.

• Manufacturers should include software bills of materials (SBOMs) and
ensure their products do not contain vulnerable components developed
by third parties.

• The supply of incorrect, incomplete, or misleading information can lead
to administrative fines.

6 | Chapter 1: Supply Chain Security

Location Document Supply chain security mentions
EU Council conclusions on ICT

supply chain security22
• Strengthen resilience and security of supply chains.
• Continuous assessment, analysis, and monitoring.
• Diversify suppliers.
• Certification schemes that include requirements on supply chain

security.
• Supply chain risk management.
• Development of an Information and Communication Technologies (ICT)

Supply Chain Toolbox.

EU Network and Information
Systems Directive 2 (NIS2)23

• Member states to designate Computer Security Incident Response Teams
(CSIRTS) to monitor for supply chain compromises.

• Member states’ cybersecurity strategies should help small and medium-
sized enterprises with supply chain challenges.

• Align to industry standards and best practices including supply chain
assessments.

• Supplier’s secure development procedures.
• Coordinated security risk assessments on critical supply chains.

EU Chips Act (proposed)24 • Building and reinforcing Europe’s capacity (including resiliency) to
innovate in the design, manufacturing, and packaging of advanced
chips.

• Developing an in-depth understanding of global semiconductor supply
chains.

Ireland Electronic Communications
Security Measures (ECSM)
009: Supply Chain Security25

• Implement supply chain security measures such as risk profiles, incident
management, and monitoring.

• Security requirements between parties must be in place.
• Minimize data sharing to only what is necessary.
• Host data natively instead of through a third party when possible.

New
Zealand

NCSC Cyber Security
Framework26

• Knowing where security responsibilities lie between an organization and
its suppliers.

New
Zealand

Supply Chain Cyber
Security27

• Introduction to understanding and managing supply chain cyber risk.
• Three phases (identify, assess, and manage) to guide organizations.

United
Kingdom

Supply Chain Security
Guidance28

• Twelve principles, including risk management, controls, and continuous
improvement.

• Know your suppliers, security risks, and requirements.
• Security awareness, incidents, assurance, and measurements.

UK Supplier Assurance
Framework: Good Practice
Guide29

• Consistent proportionate baseline, implementable in stages, for
managing information risk in supplier contracts.

• Risk levels and visibility.
• Physical security, business continuity, cyber, personnel and information

security.
• Common Criteria for Assessing Risk (CCfAR) assessment—set of outline

criteria according to risk levels.
• Statement of Assurance (SoA) tool—assessment criteria aligned to ISO

27001:2005 information security.

Requirements, Laws, Regulations, and Directives | 7

Location Document Supply chain security mentions
UK Secure development and

deployment guidance30
• Guidance for developers on producing clean and maintainable code;

securing the development environment, code repository, build pipeline,
and deployment pipeline; and continuous testing.

• Contains implementation actions and self-assessments.

UK Supply Chain Guidance31 • Guidance for business leaders, practitioners, and suppliers.
• Governance, culture, expectations, security levels, and risk

management.
• Questionnaires, assessments, contracts, performance, and termination.
• Threats, exposure, incident management.

UK How to Assess and Gain
Confidence in Your Supply
Chain Cybersecurity32

• Supplier relationships and the ways organizations are exposed to
vulnerabilities and attacks.

• Cybersecurity in supplier assessments and contracts.
• Continuous improvement for supply chain security.
• Expected outcomes and steps for supplier cyber assessments.

US NIST Cybersecurity
Framework (CSF):
Framework for Improving
Critical Infrastructure
Cybersecurity33

• Identifies four tiers of supply chain risk management maturity.
• Requirements to communicate with stakeholders.
• Outlines cyber supply chain relationships.
• Framework core includes the Supply Chain Risk Management category.

US NIST SP 800-53: Security and
Privacy Controls for
Information Systems and
Organizations34

• Supply chain risk management controls, processes, strategies, and
planning.

• Supply chain incident management.
• Supply chain risk assessments.

US Executive Order 14017:
America’s Supply Chains35

• Supply chains for semiconductor manufacturing and advanced
packaging, information and communications technology (ICT), energy
sector, transportation, digital products.

• Third-party risks (nation-states).
• Location of key manufacturing and production assets.
• Alternative and redundant sources for critical goods and materials.
• Workforce skills and best practices.
• Addressing software vulnerabilities.
• Supply chain monitoring.

US Executive Order 14028:
Improving the Nation’s
Cybersecurity36

• Remove contractual barriers that prevent sharing of threats, incidents,
and risks.

• Service providers collect, preserve, and share information relevant to
cybersecurity events.

• Publish software supply chain security guidelines for secure software
development environments and tools, software origins, and software
bills of materials.

US The Minimum Elements for a
Software Bill of Materials
(SBOM)37

• An SBOM is a formal record containing details and supply chain
relationships of various components used in building software.

• Minimum elements for data fields, data formats, practices, and
processes.

8 | Chapter 1: Supply Chain Security

Location Document Supply chain security mentions
US Memo M-22-18: Enhancing

the Security of the Software
Supply Chain through Secure
Software Development
Practices38

• US federal agencies must only use software that meets NIST guidance
(e.g., NIST 800-218).

• Self-attestation forms and SBOMs must be obtained from software
publishers.

US NIST SP 800-161:
Cybersecurity Supply Chain
Risk Management for
Systems and Organizations39

• Cybersecurity Supply Chain Risk Management (C-SCRM) is a process for
managing exposure to cybersecurity risks throughout the supply chain
and developing response strategies, policies, processes, and procedures.

• Guidance to enterprises on how to identify, assess, select, and
implement risk management processes and mitigating controls.

• C-SCRM security controls including access control, training, configuration
management, identification and authentication, incident response,
physical and environmental protection, personnel security, risk
assessments, system and information integrity, and supply chain risk
management.

US NIST SP 800-218: Secure
Software Development
Framework (SSDF)40

• Identifies secure software development practices: protect the
organization, protect the software, produce well-secured software, and
respond to vulnerabilities.

• Communicating requirements to third parties.
• Third-party attestation and provenance.

US Chips and Science Act41 • Funding for security, innovation, facilities, equipment, and workforce to
support the development, fabrication, assembly, testing, and packaging
for semiconductors, telecommunications, and emerging technologies.

• Support information security measures for the development and
lifecycle of software and the software supply chain.

US National Cybersecurity
Strategy42

• Secure the federal civilian executive branch (FCEB) through software
supply chain risk mitigation.

• Strategic objective to secure global supply chains for information,
communications, and operational technology products and services.

US Food and Drug
Administration (FDA)—
Cybersecurity in Medical
Devices: Quality System
Considerations and Content
of Premarket Submissions43

• Requires a Secure Product Development Framework (SPDF) and secure
design when creating medical devices.

• Transparency including SBOMs.
• Supply chain security of third-party software components.

Countries also have certain requirements and regulatory oversight such as the US Food
and Drug Administration, as referenced in the previous table, the US Federal Risk and
Authorization Management Program (FedRAMP), which we’ll mention in Chapter 8,
and the Federal Energy Regulatory Commission (FERC). We can expect there to be more
requirements and laws as supply chain security risks increase globally.

Requirements, Laws, Regulations, and Directives | 9

You should leverage customers, industry associations, and peer networks to maintain
awareness of new supply chain requirements, standards, laws, directives, guidance,
and regulations. Industry groups, such as technology alliances, may have sector-
specific supply chain guidance, as seen in the North American Electric Reliability
Corporation’s (NERC) Supply Chain Risk Management Program.44

Summary
Supply chain security is an age-old topic, but it has received significant attention over
the past few years as malicious actors have taken advantage of vulnerabilities, suppli‐
ers, open source, and supply chains. New concepts, such as software having its own
supply chain, raise the importance of understanding how supply chains work for
physical and digital products. Software supply chains are being attacked daily by
malicious actors, thus leading to business impacts such as data loss, operational
downtime, lost revenue, decreased customer trust, and potential violation of regula‐
tions or laws. It is vital that organizations understand and comply with global supply
chain security laws and regulations before implementing the frameworks, standards,
or models that I’ll introduce in Chapter 2.

References
1 Marcia Wendorf, “Tamper-Resistant Packaging Began in 1982 with 7 Still
Unsolved Murders”, Interesting Engineering, December 16, 2019.

2 Katie Balevic, “Colonial Pipeline Ransomware Attack Fuels Gas Price Fears after
Russian ‘DarkSide’ Hack Halts Pipeline Between TX and NJ”, The Sun, May 10, 2021.

3 “Supply Chain Risk”, NIST, accessed December 7, 2023.

4 “Supply Chain Risk Management (SCRM)”, NIST, accessed December 7, 2023.

5 Firmware is software permanently programmed into hardware, and then the
firmware can instruct the hardware to perform functions. Firmware is also known as
embedded software, though historically firmware was for lower-level functions and
embedded software was for higher-level functions.

6 Free and Open Source Software (FOSS), which includes open software libraries
and source code packages (a collection of binaries, scripts, and data), is free to use,
copy, study, and change according to its software license. Popular examples of FOSS
are the Linux operating system, MySQL database, OpenSSL secure communication
package, and Log4j logging framework.

7 “Computer Security Resource Center”, NIST, accessed December 7, 2023.

8 Pam Baker, “The SolarWinds Hack Timeline: Who Knew What, and When?”
CSO, June 4, 2021.

10 | Chapter 1: Supply Chain Security

https://interestingengineering.com/innovation/tamper-resistant-packaging-began-in-1982-with-7-still-unsolved-murders
https://interestingengineering.com/innovation/tamper-resistant-packaging-began-in-1982-with-7-still-unsolved-murders
https://www.thesun.co.uk/news/us-news/14905150/colonial-pipeline-ransomware-attack-gas-price-russian-hack-pipeline
https://www.thesun.co.uk/news/us-news/14905150/colonial-pipeline-ransomware-attack-gas-price-russian-hack-pipeline
https://csrc.nist.gov/glossary/term/supply_chain_risk
https://csrc.nist.gov/glossary/term/supply_chain_risk_management
https://csrc.nist.gov
https://www.csoonline.com/article/3613571/the-solarwinds-hack-timeline-who-knew-what-and-when.html

9 Catalin Cimpanu, “Microsoft Confirms It Was Also Breached in Recent Solar‐
Winds Supply Chain Hack”, ZDNET, December 17, 2020.

10 Eduard Kovacs, “SolarWinds Agrees to Pay $26 Million to Settle Shareholder
Lawsuit over Data Breach”, Security Week, November 7, 2022.

11 Menghan Xiao, “Digging into the Numbers One Year after Log4Shell”, SC
Media, December 16, 2022.

12 “Cyber Supply Chain Risk Management”, Australian Cyber Security Centre, May
22, 2023.

13 “Identifying Cyber Supply Chain Risks”, Australian Cyber Security Centre, May
22, 2023.

14 Commonwealth of Australia, Critical Technology Supply Chain Principles, 2021.

15 “Security of Critical Infrastructure Act 2018”, Australian Government, May 2,
2022.

16 “国家标准”, National Standardization Management Committee, March 9, 2022.

17 “网络安全审查办法_信息产业（含电信）_中国政府网”, Gov.cn, accessed
December 7, 2023.

18 “全国信息安全标准化技术委员会”, Org.cn, accessed December 7, 2023.

19 “Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016”, EUR-Lex, accessed December 16, 2023.

20 “Regulation (EU) 2019/881 of the European Parliament and of the Council of 17
April 2019”, EUR-Lex, accessed December 16, 2023.

21 The European Parliament and Council, Proposal for a Regulation of the European
Parliament and of the Council on Horizontal Cybersecurity Requirements for Products
with Digital Elements and Amending Regulation (EU) 2019/1020, September 15, 2022.

22 “Council Conclusions on ICT Supply Chain Security”, Council of the European
Union, October 17, 2022.

23 “Directive (EU) 2022/2555 of the European Parliament and of the Council of 14
December 2022”, EUR-Lex, accessed December 16, 2023.

24 “European Chips Act”, European Commission, April 18, 2023.

25 Government of Ireland, Electronic Communications Security Measures 009—Sup‐
ply Chain Security, 2021.

26 “NCSC Cyber Security Framework”, National Cyber Security Centre of New
Zealand, accessed December 7, 2023.

Summary | 11

https://www.zdnet.com/article/microsoft-was-also-breached-in-recent-solarwinds-supply-chain-hack-report
https://www.zdnet.com/article/microsoft-was-also-breached-in-recent-solarwinds-supply-chain-hack-report
https://www.securityweek.com/solarwinds-agrees-pay-26-million-settle-shareholder-lawsuit-over-data-breach
https://www.securityweek.com/solarwinds-agrees-pay-26-million-settle-shareholder-lawsuit-over-data-breach
https://www.scmagazine.com/feature/third-party-risk/digging-into-the-numbers-one-year-after-log4shell
https://www.cyber.gov.au/resources-business-and-government/maintaining-devices-and-systems/outsourcing-and-procurement/cyber-supply-chains/cyber-supply-chain-risk-management
https://www.cyber.gov.au/resources-business-and-government/maintaining-devices-and-systems/outsourcing-and-procurement/cyber-supply-chains/identifying-cyber-supply-chain-risks
https://www.homeaffairs.gov.au/cyber-security-subsite/files/critical-technology-supply-chain-principles.pdf
https://www.legislation.gov.au/Details/C2022C00160
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=56123482721B1AC3CEDCD3B5C022CAD8
http://www.gov.cn/zhengce/zhengceku/2022-01/04/content_5666430.htm
http://Gov.cn
https://www.tc260.org.cn/front/bzzqyjDetail.html?id=20220930173005&norm_id=20211108000018&recode_id=48921
http://Org.cn
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://ec.europa.eu/newsroom/dae/redirection/document/89543
https://ec.europa.eu/newsroom/dae/redirection/document/89543
https://ec.europa.eu/newsroom/dae/redirection/document/89543
https://data.consilium.europa.eu/doc/document/ST-13664-2022-INIT/en/pdf
https://eur-lex.europa.eu/eli/dir/2022/2555/oj
https://eur-lex.europa.eu/eli/dir/2022/2555/oj
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-chips-act_en
https://www.gov.ie/pdf/?file=https://assets.gov.ie/205231/36cba263-8a62-4777-a314-74d4685741d5.pdf
https://www.gov.ie/pdf/?file=https://assets.gov.ie/205231/36cba263-8a62-4777-a314-74d4685741d5.pdf
https://www.ncsc.govt.nz/resources/ncsc-cyber-security-framework

27 National Cyber Security Centre of New Zealand, Supply Chain Cyber Security. In
Safe Hands, accessed December 7, 2023.

28 “Supply Chain Security Guidance”, UK National Cyber Security Centre, January
28, 2018.

29 Cabinet Office, Supplier Assurance Framework: Good Practice Guide, version 1.1,
May 2018.

30 UK National Cyber Security Centre, “Secure Development and Deployment
Guidance”, November 22, 2018.

31 “Supply Chain Guidance”, National Protective Security Authority, April 21,
2022.

32 “How to Assess and Gain Confidence in Your Supply Chain Cyber Security”, UK
National Cyber Security Centre, October 12, 2022.

33 National Institute of Standards and Technology, Framework for Improving Criti‐
cal Infrastructure Cybersecurity, version 1.1, April 16, 2018.

34 Joint Task Force Interagency Working Group, NIST 800-53: Security and Privacy
Controls for Information Systems and Organizations, National Institute of Standards
and Technology, September 2020.

35 “Executive Order on America’s Supply Chains”, The White House, February 24,
2021.

36 “Executive Order on Improving the Nation’s Cybersecurity”, The White House,
February 24, 2021.

37 US Department of Commerce, The Minimum Elements for a Software Bill of
Materials (SBOM), July 12, 2021.

38 Shalanda D. Young, “Memo M-22-18: Enhancing the Security of the Software
Supply Chain through Secure Software Development Practices”, Executive Office of
the President, Office of Management and Budget, September 14, 2022.

39 Jon M. Boyens, Angela Smith, Nadya Barol, Kris Winkler, Alex Holbrook, and
Matthew Fallon, NIST SP 800-161 Rev. 1: Cybersecurity Supply Chain Risk Manage‐
ment for Systems and Organizations, National Institute of Standards and Technology,
May 2022.

40 Murugiah Souppaya, Karen Scarfone, and Donna Dodson, NIST SP 800-218:
Secure Software Development Framework (SSDF) Version 1.1, National Institute of
Standards and Technology, February 2022.

41 “H.R.4346—Chips and Science Act: 117th Congress (2021–2022)”, Con‐
gress.gov, August 9, 2022.

12 | Chapter 1: Supply Chain Security

https://www.ncsc.govt.nz/assets/NCSC-Documents/NCSC-Supply-Chain-Cyber-Security.pdf
https://www.ncsc.govt.nz/assets/NCSC-Documents/NCSC-Supply-Chain-Cyber-Security.pdf
https://www.ncsc.gov.uk/collection/supply-chain-security
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/707416/2018-May_Supplier-Assurance-Framework_Good-Practice-Guide.pdf
https://www.ncsc.gov.uk/collection/developers-collection
https://www.ncsc.gov.uk/collection/developers-collection
https://www.npsa.gov.uk/protected-procurement
https://www.ncsc.gov.uk/collection/assess-supply-chain-cyber-security
https://doi.org/10.6028/nist.cswp.04162018
https://doi.org/10.6028/nist.cswp.04162018
https://doi.org/10.6028/nist.sp.800-53r5
https://doi.org/10.6028/nist.sp.800-53r5
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://doi.org/10.6028/nist.sp.800-161r1
https://doi.org/10.6028/nist.sp.800-161r1
https://doi.org/10.6028/nist.sp.800-218
https://doi.org/10.6028/nist.sp.800-218
https://www.congress.gov/bill/117th-congress/house-bill/4346
http://Congress.gov
http://Congress.gov

42 The White House, National Cybersecurity Strategy, March 1, 2023.

43 US Food & Drug Administration, Cybersecurity in Medical Devices: Quality Sys‐
tem Considerations and Content of Premarket Submissions: Guidance for Industry and
Food and Drug Administration Staff, September 27, 2023.

44 “Supply Chain Risk Mitigation Program”, North American Electric Reliability
Corporation, accessed December 7, 2023.

Summary | 13

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.fda.gov/media/119933/download?attachment
https://www.fda.gov/media/119933/download?attachment
https://www.fda.gov/media/119933/download?attachment
https://www.nerc.com/pa/comp/Pages/Supply-Chain-Risk-Mitigation-Program.aspx

CHAPTER 2

Supply Chain Frameworks and Standards

Supply chain frameworks are supporting structures for supply chain management
systems. These frameworks, combined with supply chain standards created by stand‐
ards bodies, focus on evaluating the risk introduced by organizations and their third
parties in the overall supply chain. In Chapter 1, I provided a high-level summary of
the supply chain security topics covered in various worldwide laws, regulations, and
guidelines. In this chapter, I describe various risk management and supply chain
frameworks and standards that an organization can use to meet the requirements
established by governments and customers. Although specific vendors are not men‐
tioned in this book, you can also evaluate several commercial risk assessment tools
that use a framework approach, and these may target general supply chains or specific
industries (e.g., energy or healthcare).

In order to discuss supply chain frameworks and standards, I will first provide an
overview of risk management frameworks most used for technologies and software
supply chains. By understanding risk management itself, you will then have the foun‐
dation, as shown in Figure 2-1, for the supply chain frameworks and standards that
usually fit within an overall risk management framework.

Figure 2-1. Supply chain risk management

15

The NIST IR 8286 series (“Integrating Cybersecurity and Enterprise Risk Manage‐
ment [ERM]”) can also help you use cybersecurity risk information as inputs in your
organization’s risk management processes.1 After I describe the technology risk man‐
agement frameworks, supply chain frameworks, and supply chain standards, you can
then choose which ones will be the best for your organization and suppliers to follow.

Technology Risk Management Frameworks
Risk is an element in every business or organization decision, even when it is not
labeled specifically as a risk. Whether to work with a supplier or to create something
internally is one of the first steps in many of your organizational decisions. Some‐
times referred to as a “build versus buy” decision, this process may assess financial
and credit risks (e.g., is it more expensive to build it ourselves or to trust a supplier
that may go out of business?) or strategic and operational risks (e.g., will the supplier
copy our approach and become a competitor?).

A risk management framework (RMF) is a set of guidelines and practices used by
organizations to identify, eliminate, mitigate, measure, and monitor risks. A technol‐
ogy RMF includes a number of risk types for evaluation, such as financial, credit,
strategic, operational, technical, regulatory, legal, and political. RMFs all provide
some core components to consider—identification, assessment, prioritization, mitiga‐
tion, and governance—which are the basis for supply chain risk management, but are
not necessary for you to select an RMF for adoption within your organization. Know‐
ing these frameworks exist, and which RMFs are available, provides a foundation for
discussing supply chain risk management frameworks.

NIST SP 800-37 Risk Management Framework (RMF)
In my experience, the NIST RMF is the most comprehensive of the technology RMFs
due to its frequent additions and updates to the suite of documents covering security,
privacy, monitoring, information systems, assessments, supply chain, and engineer‐
ing.2 There are over 20 documents referenced as part of the NIST RMF, with the pri‐
mary document being NIST SP 800-37 (“Risk Management Framework for
Information Systems and Organizations: A System Life Cycle Approach for Security
and Privacy”).3 Although an abundance of documentation can be a good thing, it can
also make it difficult to locate what you need. In this book, I hope to provide you with
an understanding of not only this set of documents but how hundreds of documents
and article references can come together to create a software supply chain security
practice for your organization.

NIST is an organization within the US Department of Commerce, and although the
RMF was developed for the US federal government, the contributors to the NIST
frameworks and documents are from all around the world. International organiza‐
tions and governments provide feedback and, in turn, reference those documents in

16 | Chapter 2: Supply Chain Frameworks and Standards

their own security and supplier frameworks. For example, Ireland’s “Electronic Com‐
munications Security Measures (ECSM) 009: Supply Chain Security” references sev‐
eral NIST documents.

The freely available NIST RMF consists of a seven-step process to manage informa‐
tion security and privacy risk, as shown in Figure 2-2:

Prepare
Conduct activities to prepare the organization for managing security and privacy
risks. This step interacts with every step of the RMF. It helps you identify key
roles, set the organization risk management strategy, perform organizational risk
assessments, and establish continuous monitoring of risks.

Categorize
Identify the adverse impacts for organizational processes and tasks with respect
to the loss of confidentiality, integrity, and availability of systems and the infor‐
mation processed, stored, and transmitted by those systems. During this step you
will document system characteristics for categorizing the systems from a security
viewpoint.

Select
Establish the security and privacy controls to protect the systems based on the
risk assessments. This step has usually been performed if your organization has
an information security program, but you should also include the security con‐
trols provided throughout this book if your control set does not include them.

Implement
Deploy the required controls to your organization. This step includes setting
technology controls such as configurations.

Assess
Verify the controls are in place, operating as intended, and producing the desired
outcomes. This step requires examining statements, evidence, or reports to con‐
firm the controls have been met and defining remediations for any deficiencies.

Authorize
Request leadership approval to validate the security and privacy risks have been
met. This step is a formal process to ensure accountability at the top level of the
organization.

Monitor
Track the implementation of controls and the level of risk on a continuous basis.
This step should employ technologies, automation, and repeatable processes to
alert you when controls are not being met.

Technology Risk Management Frameworks | 17

Figure 2-2. The seven steps of the NIST risk management framework

For each step, the NIST website includes the outcomes you should receive from each
step, resources for implementing the RMF, and the supporting NIST publications you
will need to perform each step.4

ISO 31000:2018 Risk Management
For any organization using ISO/IEC standards, the ISO 31000:2018 Risk Manage‐
ment standard provides a solid foundation for risk management.5 First released in
2009, the ISO 31000 standard replaced the Australia and New Zealand Standard (AS/
NZS) 4360:2004. ISO 31000 was updated in 2018 and is also supported by IEC
31010:2019 Risk Management—Risk Assessment Techniques.6

The for-purchase ISO 31000 standard manages risks based on principles, framework,
and process. It does not have a technology focus, but as an ISO standard, it is easily
referenced by other ISO standards. Since this is more of a general risk management
standard, you may already have much of this structure in place within your
organization.

The risk management principles, as shown in Figure 2-3, are as follows:

Integrated
Include risk management in all organizational activities.

Structured and comprehensive
Maintain consistency and be thorough in risk management.

Customized
Adapt the risk management framework and process to your organization’s needs.

18 | Chapter 2: Supply Chain Frameworks and Standards

Inclusive
Incorporate stakeholders into the risk management process for them to provide
input and to improve their awareness of the organizational risks.

Dynamic
Update the risks as the organization’s context changes.

Best available information
Use historical and current information as inputs to risk management.

Human and cultural factors
Recognize behavioral and cultural influence in the risk management process.

Continual improvement
Enhance the risk management process through learning and experience.

Figure 2-3. ISO 31000 principles

Once the principles of risk management are understood, the risk framework can be
applied. The framework assists the organization in integrating risk management into
significant activities and functions. Risk management should be included in the
organization’s decision making, and it requires stakeholder support.

The components of the framework, as shown in Figure 2-4, are as follows:

Leadership and commitment
Senior management and the organization’s board should provide support and
resources to ensure that risk management is integrated into all organizational
activities.

Technology Risk Management Frameworks | 19

Integration
Include risk management in the organization’s purpose, governance, leadership,
strategy, and operations.

Design
Understand the organization and its mission, communicate the leadership
commitment, assign roles, allocate resources, and share risk information.

Implementation
Develop and execute a risk management plan into the organizational activities
and decision-making process.

Evaluation
Measure and assess the risk management plan’s performance.

Improvement
Adapt the risk management plan to address changes and required improvements.

Figure 2-4. ISO 31000 framework

As you put the framework in place, you should build out the risk management pro‐
cesses. These iterative processes include the policies, procedures, and practices for
communicating, consulting, scoping, monitoring, reviewing, recording, and report‐
ing, as shown in Figure 2-5 and described as follows:

Scope, context, and criteria
Customize the risk management process for the organization and understand the
environment.

Risk assessment
First identify and describe the risks, then analyze and comprehend the nature of
the risks, and finally evaluate the risks to support decisions.

20 | Chapter 2: Supply Chain Frameworks and Standards

Risk treatment
Select and implement options for addressing risk.

Communication and consultation
Assist stakeholders in understanding risk, promote awareness, and obtain
feedback.

Monitoring and review
Assure and improve the effectiveness and quality of the process design,
implementation, and outcomes.

Recording and reporting
Document and provide the results on the activities and outcomes.

Figure 2-5. ISO 31000 process

The ISO 31000 Risk Management standard is a good start for a risk management
framework and is adaptable to nontechnology risks. A more IT-focused control
framework, such as COBIT 2019, described in “Control Objectives for Information
and Related Technologies (COBIT®) 2019” on page 22, may be more suitable for a
larger organization that needs to manage many technology risks.

Technology Risk Management Frameworks | 21

Control Objectives for Information and
Related Technologies (COBIT®) 2019
Originally developed in 1996 by the Information Systems Audit and Controls Associ‐
ation (ISACA) for financial auditing of IT systems, the COBIT IT governance system
and framework has expanded and matured through its six versions.7 Applicable to
organizations of all sizes, COBIT 2019 has six principles in its governance system, as
shown in Figure 2-6 and described as follows:

Meet stakeholder needs
Implement a governance system to generate value from information and
technology.

Holistic approach
Integrate various components to create the governance system.

Dynamic governance system
Consider the impact each time a design factor (areas that influence the gover‐
nance system such as strategies, risk profiles, and requirements) is changed.

Distinct governance from management
Separate management activities and the governance system.

Tailored to enterprise needs
Use a set of design factors to customize and prioritize the governance system
components.

End-to-end governance system
Expand beyond the IT function to all information and technology processing.

Figure 2-6. COBIT 2019 governance system principles

22 | Chapter 2: Supply Chain Frameworks and Standards

The COBIT 2019 documentation is separated into multiple documents, which, like
the NIST RMF, can be overwhelming when considering adoption of the framework.8
Although the COBIT 2019 Toolkit is free, there are specific publications, for example
the “COBIT for Small and Medium Enterprises Using COBIT 2019,” that are available
for purchase.9 The documents are free to members who have an ISACA certification,
such as a certified information security auditor (CISA).

Inside the COBIT 2019 Toolkit are several spreadsheets that can be used for imple‐
menting the 40 COBIT IT objectives in your organization. These controls are grou‐
ped into five governance and management objectives, as shown in Figure 2-7 and
described as follows:

Evaluate, direct, and monitor (EDM)
These five controls ensure there is a governance framework, business value, risk
optimization, and stakeholder engagement.

Align, plan, and organize (APO)
These 14 controls manage the framework, strategy, enterprise architecture, inno‐
vation opportunities, IT portfolio, budgets, human resources, stakeholder rela‐
tionships, service agreements, vendors, quality, technology risk, security, and
data.

Build, acquire, and implement (BAI)
These 11 controls establish IT programs, requirements, solutions, availability,
organizational changes, IT changes, change acceptance, knowledge bases, asset
management, configurations, and projects.

Deliver, service, and support (DSS)
These six controls govern operations, IT services, problems, continuity, security
services, and business processes.

Monitor, evaluate, and assess (MEA)
These four controls measure performance, internal controls, compliance to exter‐
nal requirements, and assurance.

Figure 2-7. COBIT 2019 objectives

Technology Risk Management Frameworks | 23

Although COBIT 2019 is more of an IT controls framework than a risk management
framework, COBIT does have risk management practices, which require examination
of the business risk for the ownership, operation, and adoption of IT within an orga‐
nization. By using the COBIT framework guidance, IT and business managers can
incorporate IT risk into enterprise risk management.

NIST Cybersecurity Framework (CSF)
The NIST Cybersecurity Framework (CSF) is a voluntary set of information security
measures and controls that can help organizations to identify, assess, and manage
cyber risks. There are many similarities with the ISO/IEC 27001 Information Security
Management standard, with the most obvious differences being that the NIST CSF is
free and does not have a compliance certificate, whereas organizations must purchase
ISO/IEC 27001 and they have the option to certify to the standard.10

The NIST CSF uses business objectives to guide cybersecurity activities and consider
cybersecurity risks as part of the organization’s risk management processes. As shown in
Figure 2-8, the NIST CSF version 1.1 has five Framework Core functions: Identify, Pro‐
tect, Detect, Respond, and Recover. At the time this book was published, NIST was in the
revision process to create CSF version 2, which may include—based on the drafts—a new
Govern function that will reside within the center of the other five functions.

Figure 2-8. NIST Cybersecurity Framework version 1.1 core functions

For each function there are categories, subcategories, and informative references (ref‐
erences to other standards, guidelines, and practices for the purpose of achieving the
outcomes). In the CSF draft version 2, implementation examples are now included, as
shown in Figure 2-9. The functions and categories each have a unique identifier. For
example, in version 1.1, ID.SC represents the Identify function and its Supply Chain
Risk Management category. In draft version 2, GV.SC represents the Cyber Supply
Chain Risk Management category within the new Govern function. When CSF ver‐
sion 2 releases, it will include a change log that describes everything that changed
between the two versions.

24 | Chapter 2: Supply Chain Frameworks and Standards

Figure 2-9. NIST Cybersecurity Framework version 2 draft core functions

In addition to the Framework Core, the NIST CSF has two other parts: Implementa‐
tion Tiers and Framework Profiles. The implementation tiers provide context to an
organization’s view of its cybersecurity risk and risk management processes. The four
tiers are similar to those in other maturity models: Partial (tier 1), Risk Informed (tier
2), Repeatable (tier 3), and Adaptive (tier 4). CSF draft version 2 has renamed these to
be Framework Tiers and suggests that not all organizations need to be at a particular
tier (e.g., tier 3 or 4).

An organization can use the Framework Profiles to align and prioritize its cyberse‐
curity activities using the tiers to define the current profile and the target profile. For
example, ID.SC is tier 1 in the current profile, but the organization would like to
reach tier 2 within 12 months. The Cyber Risk Institute developed a financial services
cybersecurity profile with financial sector references and sector-specific tiers.11 After
the release of CSF version 2, NIST hopes that other groups will create community tar‐
get profiles, such as original equipment manufacturer (OEM) profiles or startup SaaS
provider profiles.

For organizations that do not already have or plan to obtain ISO/IEC 27001 certifica‐
tion, I prefer NIST CSF because it contains a basic supply chain risk management cat‐
egory that any organization can implement. It also has many references and
connections to the more comprehensive NIST SP 800-161 Cybersecurity Supply
Chain Risk Management document that I discuss in “Supply Chain Frameworks and
Standards” on page 26.

There are many risk management frameworks that I did not elaborate on due to their
similarity with those already mentioned in this chapter or their concentration on cyberse‐
curity. Two of these frameworks are the Factor Analysis of Information Risk (FAIR) and
the Committee of Sponsoring Organizations of the Treadway Commission (COSO) Risk
Management Framework.12,13 The next layer of risk management, beyond enterprise and
IT risk management, is found in the supply chain frameworks of the next section.

Technology Risk Management Frameworks | 25

Supply Chain Frameworks and Standards
Although this book will provide overall guidance, if you need a formal way to
address software supply chain security, you may want to adopt one of the established
supply chain frameworks or standards mentioned in this section. Free government
frameworks, such as NIST 800-161 (“Cybersecurity Supply Chain Risk Management
for Systems and Organizations”), are developed for their own agencies and organiza‐
tions to use when managing transactions with commercial suppliers. These frame‐
works can include special language, procurement rules, and regulations. Standards
from organizations such as ISO or IEC, however, must be purchased and, if certifica‐
tion is desired, may be quite costly to deploy and receive accreditation. Table 2-1
summarizes the key attributes of the supply chain frameworks or standards described
in this section.

Table 2-1. Attributes of supply chain frameworks and standards

Framework/Standard Technology Cybersecurity Considerations
NIST 800-161 Cybersecurity Supply Chain Risk
Management for Systems and Organizations

Yes Yes Free and referenced globally

UK Supplier Assurance Framework Yes Limited Assessment tool available
MITRE System of Trust™ (SoT) Framework Yes Yes Extensive supplier risks
ISO/IEC 20243-1:2023 Open Trusted Technology Provider
Standard (O-TTPS)

Yes Yes Self-assess certification

SCS 9001 Supply Chain Security Standard Yes Yes Updated frequently
ISO 28000:2022 Security and Resilience No No General supply chain security
ISO/IEC 27036 Information Security for
Supplier Relationships

Yes Yes Limited supply chain security and
product security

When deciding which frameworks and standards to adopt, you need to consider your
organization’s industry, products, and services. For example, if your organization
works primarily with government agencies, you may choose the US or UK frame‐
works. For those specifically working with ICT products or services, the standards
discussed in this section, such as ISO/IEC 20243, SCS 9001, or ISO/IEC 27036, may
be good options.

NIST SP 800-161 Cybersecurity Supply Chain Risk Management
for Systems and Organizations
NIST SP 800-161 (“Cybersecurity Supply Chain Risk Management for Systems and
Organizations”), also known as C-SCRM, is the most comprehensive supply chain
risk management document available at the time of this book’s publication. NIST SP
800-161 has over 300 pages, which makes for a very complete approach but one that
can be overwhelming to implement within an organization. I will provide highlights

26 | Chapter 2: Supply Chain Frameworks and Standards

of the NIST SP 800-161 document in this section. However, you’ll find key elements
of C-SCRM and other supply chain frameworks throughout this book as well.

The first part of NIST SP 800-161 describes the various dimensions within the C-
SCRM framework to establish how organizations can positively impact cybersecurity
risk in the supply chain. The 12 dimensions of C-SCRM are shown in Figure 2-10
and described as follows:

Culture and awareness
Educate the organization on the importance of successfully adopting C-SCRM
practices such as supplier risk management and secure development.

Security
Maintain the confidentiality, integrity, and availability for supply chain informa‐
tion of the product or service. This information includes the physical and digital
supply chain paths, intellectual property, and the participants in the supply chain.

Suitability
Find the correct product or service by leveraging information from the supply
chain.

Safety
Ensure there are no conditions where the product or service may cause illness,
injury, damage, or death.

Reliability
Ensure the product or service operates for the required time period.

Usability
Verify that the product or service satisfies the users’ requirements for effective‐
ness and efficiency.

Quality
Achieve performance and meet specifications for the product or service while
mitigating weaknesses and vulnerabilities.

Efficiency
Verify that the product or service delivers timely results.

Maintainability
Assess whether the product or service can accommodate changes and
improvements.

Integrity
Ensure the products or services have not been tampered with or improperly
modified.

Supply Chain Frameworks and Standards | 27

Scalability
Validate the capacity of the product or service to meet future growth and
demand.

Resilience
Verify that the product, service, or supply chain can adapt to change conditions
and disruptions.

Figure 2-10. The 12 dimensions of cyber supply chain risk management

Once the dimensions of the C-SCRM are understood, NIST SP 800-161 then
describes critical success factors necessary to successfully address cybersecurity risks
in the supply chain. The six critical success factors are designed to reach goals for a
successful C-SCRM program and are described as follows:

Integrating C-SCRM into acquisitions
Success is when purchasers include C-SCRM requirements, controls, and risk
assessments in the purchasing lifecycle. Organizations should also monitor
changes to cybersecurity risks in the supply chain that can trigger mitigations or
reassessment. The goal is to reduce cybersecurity risk and exposure by imple‐
menting C-SCRM in the procurement process.

Supply chain information sharing
Success is when organizations have visibility into the cybersecurity risks through‐
out the supply chain and can share that information with others. Information
may include threats, security alerts, vulnerabilities, and potential impacts to

28 | Chapter 2: Supply Chain Frameworks and Standards

systems. The goal is to have the sharing agreements in place before critical situa‐
tions occur.

C-SCRM training and awareness
Success is when C-SCRM education and communication is provided to system
owners, human resources, information security, legal, procurement, engineering,
software developers, risk managers, IT, management, and engineering. Training
should include the required responsibilities, processes, and procedures, as well as
how to manage security events. The goal is to have all individuals understand
their responsibilities within the C-SCRM framework.

C-SCRM key practices
Success is when the foundational C-SCRM practices are in place, such as a dedi‐
cated C-SCRM program management office (PMO), senior leadership support,
and risk management processes, policies, and procedures. Additional practices
include supplier management, governance, and incident management. The goal
is to have the C-SCRM practices implemented throughout the organization.

C-SCRM measurements
Success is when the C-SCRM program and outcomes can be measured for effec‐
tiveness against outcomes, completion, or a framework such as the NIST Cyber‐
security Framework. C-SCRM activities can be divided into three levels:
foundational, sustaining, and enhancing. The goal is to reach the highest matur‐
ity in cybersecurity supply chain practices.

Dedicated resources
Success is when resources, both funding and personnel, are provided to create
and operate a C-SCRM program. Existing funds and the use of shared services
can be redirected toward managing supply chain cybersecurity risk. The goal is
to fund the C-SCRM activities and controls in the organizational budget.

As shown in Figure 2-11, a significant portion of NIST SP 800-161 contains supply
chain security guidance and controls as an overlay to NIST SP 800-53 (“Security and
Privacy Controls for Information Systems and Organizations”). For example, the
original definition for provenance, NIST control SR-4, was enhanced to include a
software bill of materials (SBOM). To get a complete understanding of NIST control
SR-4, you need to read the SR-4 definitions in both NIST SP 800-53 and NIST SP
800-161.

This additional control guidance, found in NIST SP 800-161’s Appendices A (“C-
SCRM Security Controls”) and B (“C-SCRM Security Control Summary”), are
grouped into 20 control families dedicated to C-SCRM. Any controls from NIST SP
800-53 not referenced within NIST SP 800-161 are thus not applicable to supply
chain security.

Supply Chain Frameworks and Standards | 29

Figure 2-11. C-SCRM security controls overlay

As part of the updated security and privacy controls, each definition includes a label
called “Levels” to show where the control applies in the organization’s risk framework.
The three levels range between strategic and tactical risks, as shown in Figure 2-12:
on Level 1 are the enterprise-wide risks that are more strategic in nature; on Level 2
are the business process risks; and on Level 3 are the operational risks that are more
tactical. Most of the software controls related to supply chain address risks in Levels 2
and 3. Risks associated with Level 1 would be noted in a high-level enterprise supply
chain strategy, implementation plan, and policy. Level 2 would provide specific strate‐
gies, policies, and implementation plans for the business processes, and Level 3 would
be the operational supply chain risk management plans.

Figure 2-12. C-SCRM risk levels

NIST SP 800-161 also includes a discussion of valuable scenarios that provide tem‐
plates and examples of a risk exposure framework in Appendix C, “Risk Exposure
Framework.” The risk exposure framework is similar to a risk register often used by
project managers. Typically a risk register identifies the impact if the risk were to

30 | Chapter 2: Supply Chain Frameworks and Standards

materialize and the likelihood that the risk would happen. The risk would then be a
multiplication of the impact times the likelihood (impact × likelihood).

The risk exposure framework goes beyond the typical risk register, by including
threat scenarios before determining the impact, likelihood, and risk. This encourages
organizational risk managers to analyze potential threats and plan mitigations for
supply chain risks. I highly recommend reviewing the template and the example sce‐
narios in the document’s appendix. The risk scenarios you create for your organiza‐
tion can become great tabletop exercises (coordinated events used to practice roles
for an emergency scenario) to help prepare your organization for cybersecurity
events.

The last section I will call attention to is Appendix D, “C-SCRM Templates.” As the
name implies, it contains templates for a C-SCRM strategy, policy, plan, and risk
assessment. Within the templates are objectives and sample text that you can modify
to fit your organization’s needs.

Overall, NIST SP 800-161 is a wealth of knowledge for anyone wanting to understand
the many layers of cybersecurity supply chain risk management. You can use the
practical templates in the appendices to create an excellent supply chain risk manage‐
ment strategy and plan without having to read the entire document.

UK Supplier Assurance Framework
Other countries have also released supply chain risk management frameworks and
best practices. The UK government identified the need for a supplier assurance
framework and released a set of guidelines in May 2018.14,15 These guidelines contain
an assessment process named the Common Criteria for Assessing Risk (CCfAR) that
had been previously released a few years earlier. Within the CCfAR process is a flexi‐
ble framework and tool for assessing suppliers, but the questions and risks are limited
to only a few topics in asset identification, asset management, and impacts. It does
not contain the many topics covered in Chapter 9, but the CCfAR assessment may
provide some questions worth asking suppliers, and also aid in the identification of
high-risk projects.

As supply chain risk continues to grow globally, governments around the world will
release frameworks, best practices, rules, regulations, and more to address the risk for
their country and government purchases. If your organization is selling products or
services to any type of government, investigate what supply chain security require‐
ments are necessary for risk and compliance.

Supply Chain Frameworks and Standards | 31

MITRE System of Trust™ (SoT) Framework
There are other frameworks for evaluating supply chain risk that organizations may
choose to leverage. The MITRE Corporation, known for its Adversarial Tactics, Tech‐
niques, and Common Knowledge (ATT&CK®) framework, has designed the System
of Trust (SoT) framework for defining, aligning, and addressing the specific concerns
and risks of suppliers, supplies, and service providers.16 The framework offers a com‐
prehensive, consistent, and repeatable methodology for identifying and assessing the
risks from a supplier, its products, and its services.

SoT provides a taxonomy and a measurement model for collecting and organizing
the supplier, product, and service risks that an organization may need to consider.
The organized collection of identified risks can empower organizations to conduct
assessments in a practical, timely, and cost-efficient manner that focuses on the needs
of the organization and allows for broad adoption, training, and automation. The SoT
framework drills down into 14 top-level risk areas, 200 risk subareas, and over 1,200
risk factors and detailed risk measurement questions, as shown in Figure 2-13.

Figure 2-13. MITRE System of Trust risk categories

Using the SoT “Risk Model Manager” (RMM) cloud application, users can view, orga‐
nize, and tailor SoT content to an organization’s specific areas of concern. The RMM
can be tailored by an organization to create specific profiles, such as ICT product,
SaaS provider, or contract development, using the RMM’s adjustable questions, meas‐
urements, and scoring. The RMM is hosted within your organization, which allows
your internal systems to integrate to it, provide data, and generate results.

32 | Chapter 2: Supply Chain Frameworks and Standards

ISO/IEC 20243-1:2023 Open Trusted Technology Provider Standard
Standards provide clearly defined, repeatable requirements for organizations to fol‐
low, and the ISO/IEC 20243-1:2023 Open Trusted Technology Provider Standard
(O-TTPS) is specifically focused on product integrity and supply chain security.17

Created by The Open Group, O-TTPS was the first certifiable standard that informa‐
tion and communications technology (ICT) providers could follow throughout the
full lifecycle of their products in order to mitigate the risk of tainted (e.g., malware-
infested) and counterfeit components. The standard focuses on the commercial off-
the-shelf (COTS) ICT provider’s product lifecycle, including internal design and
development, as well as the supply chain through the following phases: design, sourc‐
ing, build, fulfillment, distribution, sustainment, and disposal.

The challenge with using standards in your organization is the cost to purchase the
standard, the time and resources required to meet the standard’s requirements, and, if
you choose to obtain certification (for standards which have the option), the addi‐
tional cost for a third party to assess your organization and maintain the certification.
What is unique about O-TTPS is that in addition to certifying through a third-party
assessor, The Open Group also provides the option for organizations to self-assess
and receive an official O-TTPS certificate.18

SCS 9001 Supply Chain Security Standard
For any organization wanting a certification explicitly for supply chain security,
ISO/IEC 20243-1:2023 or the SCS 9001 Supply Chain Security standard are worth
considering, but you would need to evaluate both standards to see which is a better fit
for your organization. Workgroups in the Telecommunications Industry Association
(TIA) designed the SCS 9001 standard on the foundation of the foremost quality
management system, ISO 9001.19 SCS 9001 contains supply chain security require‐
ments and controls such as:

• Asset identification, risk assessment, and mitigation
• Secure design, development, and lifecycle management
• Software, hardware, and component traceability
• Counterfeit parts processes
• Security performance benchmarking
• Incident response

This certifiable, process-based cyber and supply chain security standard was started
in 2020 for the ICT industry and issued its second release in 2023. It is well aligned to
other standards and government requirements, and it quickly adapts to the rapidly

Supply Chain Frameworks and Standards | 33

changing supply chain security risks rather than the five-year refresh cycle commonly
used by ISO, IEC, and ISA.

ISO 28000:2022 Security and Resilience
Frequently referenced by other standards as a general supply chain security standard,
ISO 28000:2022 is applicable to many types of organizations.20 Originally released in
2007 for the shipping and maritime industries, this standard focuses on the core
functions of a security management system, internal compliance, and conformance to
the standard. ISO 28000 is the first standard within a series of security management
standards:

• ISO 28000:2022—Security management systems
• ISO 28001:2007—Best practices for implementing supply chain security,

assessments, and plans
• ISO 28002:2011—Development of resilience in the supply chain
• ISO 28003:2007—Requirements for bodies providing audit and certification of

supply chain security management systems
• ISO 28004—Four-part series of guidelines for the implementation of ISO 28000
• ISO 28005—Two-part series for electronic port clearance

For the purpose of software supply chain security, the ISO 28000 standard does not
offer any benefits that cannot be found in other frameworks or standards, but if your
organization has already deployed ISO 28000, it can be the foundation for a software
supply chain security program.

ISO/IEC 27036 Information Security for Supplier Relationships
The multipart standard, ISO/IEC 27036, assists organizations in securing their infor‐
mation and information systems within the context of supplier relationships.21 This
standard is part of the ISO 27000 suite of standards and is intended for both purchas‐
ers and suppliers. Separated into four documents, it applies to various goods and
services such as hardware, software, and ICT services, cloud computing services, and
even public services such as power:

• ISO/IEC 27036-1—Overview and concepts
• ISO/IEC 27036-2—Requirements
• ISO/IEC 27036-3—Guidelines for information and communication technology

supply chain security
• ISO/IEC 27036-4—Guidelines for security of cloud services

34 | Chapter 2: Supply Chain Frameworks and Standards

Although it isn’t a complete supply chain security or product security standard, it
does go beyond the other standards with its focus on services and the commercial
relationship. Unlike the ISO 28000 standard, it is not possible to obtain a certification
for ISO/IEC 27036.

Framework and Standards Considerations Summary
Depending on the size of your organization, you may already have in place a technol‐
ogy risk framework such as NIST RMF, ISO 31000, or COBIT. These frameworks
aren’t required for supply chain security, but they are useful for establishing organiza‐
tional decision making and risk management.

It’s never too late for organizations, such as startups, to establish a supply chain risk
management program. In addition to the ones mentioned previously, there are also
sector-specific supply chain risk guidelines, such as the Supply Chain Risk Manage‐
ment Guide from the Health Sector Coordinating Council or the energy sector’s
North American Electric Reliability Corporation (NERC) publications within its Sup‐
ply Chain Risk Mitigation Program.22,23

Although it’s not necessary to select a supply chain framework or standard, I highly
recommend using the controls in the book as a baseline for software supply chain
security and then maturing into a framework or standard. For organizations wanting
to keep costs down, using the free NIST and MITRE supply chain security frame‐
works can expand the teachings of this book. For more ambitious practitioners, the
standards available for purchase, such as ISO/IEC 20243 and SCS 9001, can lead to
formal compliance and certifications, which may be desirable to your organization
and customers.

If you are a supplier to governments, critical infrastructure, healthcare, or segments
with strict safety standards, your organization should consider adopting official
standards and certifications, even if you are a smaller organization with limited prod‐
ucts or services. For example, you may certify to or require certification of the
HITRUST CSF as a healthcare organization.24 If you do select a supply chain stan‐
dard, be prepared to respond to inquiries on how your organization complies with
ISO, IEC, or NIST standards, because companies all over the world have identified
those frameworks and standards as a baseline for suppliers.

Summary
Risk management is the foundation every organization should have in place before
embarking on the journey to supply chain security. Regardless of whether your orga‐
nization has a formal risk management framework such as NIST RMF, or you have
established your own version, your organization’s decision-making process should
account for any number of risks, including cybersecurity risks.

Summary | 35

Once an organization has established enterprise risk management, within that frame‐
work is where we find the supply chain frameworks and standards. Typically, frame‐
works are free and standards must be purchased.

Standards for supply chain security are not as well known or used, but as the topic
gains momentum, we may see these standards recognized and adopted by larger
organizations. Standards such as ISO/IEC 20243 or SCS 9001 are beneficial if an
organization wants to have a third-party certification to prove compliance to a
standard.

After understanding the various frameworks and standards for risk management and
supply chain security, your organization can decide which is best for your situation.
The main outcome for all of these frameworks and standards is to lead organizations
toward the foundational elements of software supply chain security. In Chapter 3, I’ll
discuss the risks and controls for infrastructure security that specifically support the
end-to-end product or application lifecycle.

References
1 Kevin Stine, Stephen Quinn, Greg Witte, and R. K. Gardner, “Integrating Cyber‐
security and Enterprise Risk Management (ERM)”, National Institute of Standards
and Technology, October 2020.

2 “NIST Risk Management Framework Publications”, National Institute of Stand‐
ards and Technology, November 8, 2023.

3 National Institute of Standards and Technology, Risk Management Framework for
Information Systems and Organizations: A System Life Cycle Approach for Security and
Privacy, December 2018.

4 “NIST Risk Management Framework”, National Institute of Standards and Tech‐
nology, November 8, 2023.

5 “ISO 31000: Risk Management”, ISO, accessed December 8, 2023.

6 “IEC 31010: 2019 Risk Management—Risk Assessment Techniques”, Interna‐
tional Electrotechnical Commission, accessed December 8, 2023.

7 “COBIT: An ISACA Framework”, ISACA, accessed December 8, 2023.

8 On the COBIT Resources page within the “Why COBIT” tab is the link for
“Access the COBIT Toolkit,” which links to a ZIP file containing spreadsheets and
other COBIT 2019 documents. The “Publications” tab contains links to many publi‐
cations available for purchase or free to ISACA members.

9 “COBIT for Small and Medium Enterprises Using COBIT 2019”, ISACA, accessed
December 8, 2023.

36 | Chapter 2: Supply Chain Frameworks and Standards

https://csrc.nist.gov/pubs/ir/8286/final
https://csrc.nist.gov/pubs/ir/8286/final
https://csrc.nist.gov/Projects/risk-management/publications
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf
https://csrc.nist.gov/Projects/risk-management
https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/standard/72140.html
https://www.isaca.org/resources/cobit
https://store.isaca.org/s/store#/store/browse/detail/a2S4w000004L2noEAC

10 “ISO/IEC 27001:2022—Information Security, Cybersecurity and Privacy Protec‐
tion”, ISO, accessed December 8, 2023.

11 “CRI Profile v1.2”, Cyber Risk Institute, accessed December 8, 2023.

12 “FAIR Risk Management”, FAIR Institute, December 8, 2023.

13 “Guidance”, COSO, accessed December 8, 2023.

14 Supplier assurance is when there is confidence in a supplier. There can be many
aspects in assurance, including trust, quality, safety, security, and meeting commit‐
ments.

15 Cabinet Office, Supplier Assurance Framework: Good Practice Guide, May 2018.

16 “Supply Chain Security System of Trust”, MITRE, accessed December 8, 2023.

17 “ISO/IEC 20243-1:2023 Information Technology—Open Trusted Technology
ProviderTM Standard (O-TTPS)”, ISO, December 8, 2023.

18 “O-TTPS Certification Program”, The Open Group, accessed December 8, 2023.

19 “SCS 9001™ Cyber and Supply Chain Security Standard”, Telecommunications
Industry Association, accessed December 8, 2023.

20 “ISO 28000:2022 Security and Resilience—Security Management Systems—
Requirements”, ISO, accessed December 8, 2023.

21 “ISO/IEC 27036-1:2021 Cybersecurity—Supplier Relationships”, ISO, accessed
December 8, 2023.

22 Health Sector Coordinating Council-Cybersecurity Working Group, Health
Industry Cybersecurity—Supply Chain Risk Management Guide v2.0, October 2023.

23 “Supply Chain Risk Mitigation Program”, NERC, accessed December 8, 2023.

24 “HITRUST CSF Framework”, HITRUST Alliance, accessed December 8, 2023.

Summary | 37

https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://cyberriskinstitute.org/the-profile
https://www.fairinstitute.org/fair-risk-management
https://www.coso.org/guidance-erm
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/707416/2018-May_Supplier-Assurance-Framework_Good-Practice-Guide.pdf
https://sot.mitre.org/index.html
https://www.iso.org/standard/86338.html
https://www.iso.org/standard/86338.html
https://ottps-cert.opengroup.org/getting-started-organization-certification
https://tiaonline.org/what-we-do/scs-9001-supply-chain-security-standard
https://www.iso.org/standard/79612.html
https://www.iso.org/standard/79612.html
https://www.iso.org/standard/82905.html
https://healthsectorcouncil.org/wp-content/uploads/2023/10/HIC-SCRiM_2023-2.pdf
https://healthsectorcouncil.org/wp-content/uploads/2023/10/HIC-SCRiM_2023-2.pdf
https://www.nerc.com/pa/comp/Pages/Supply-Chain-Risk-Mitigation-Program.aspx
https://hitrustalliance.net/product-tool/hitrust-csf

CHAPTER 3

Infrastructure Security in the
Product Lifecycle

The security of intellectual property and the final product, including code, data,
defect information, scripts, and production files, relies on the various infrastructure,
systems, and devices used throughout the product lifecycle. In this chapter, I will
highlight the important processes and controls that you should address for infrastruc‐
ture security in the software supply chain. Infrastructure security doesn’t focus only
on IT-managed platforms or stop when code is complete—it must extend to all plat‐
forms and processes (e.g., digital copies, cloud, mobile app stores, development sys‐
tems, download centers, manufacturing systems, supply chain logistics, services, and
end users).

The core tenets of infrastructure security are represented by the CIA (confidentiality,
integrity, and availability) triad. Organizations need to embody these tenets in all
aspects of their networks in order to have strong infrastructure security. I have seen
organizations with strong infrastructure security in their business environments, but
little or no policies, standards, rules, controls, or guidelines in the development, test‐
ing, and supply chain environments shown in Figure 3-1. Although not having poli‐
cies may feel liberating, allowing you to design and build products without
constraints, it can lead to security gaps. As a software developer, I fully understand
the need for freedom, but there must be a balance between flexibility and security.

39

Figure 3-1. Software supply chain environments and tools

This chapter will discuss risks and controls necessary for the software supply chain
environments and tools. The controls in this chapter provide a specific focus toward
the environments and tools that present risk to the software supply chain. You can
integrate and expand the controls from this chapter into your existing infrastructure
controls (such as the Center for Internet Security’s CIS Controls).1 Due to the specific
nature of cloud infrastructure and tools used within the production environments, I
address the cloud controls in more detail throughout Chapter 6.

Developer Environments
In a typical corporate environment, most users have similar devices (usually referred
to as endpoints) such as laptops, desktops, tablets, and mobile devices. IT organiza‐
tions standardize these endpoints to allow for easier endpoint management and
maintenance of operating systems, upgrades, patches, and security. Developers, how‐
ever, usually have the capability to maintain their own developer environments due to
the complexity and flexibility required for creating new applications and products.
This could include, but is not limited to, virtual machines (VMs), virtual private
clouds (VPCs), hypervisors, and dual-boot operating systems (e.g., Linux and Win‐
dows). These other environments are often invisible to IT organizations—they’re
sometimes called shadow IT—and their endpoint management systems.

40 | Chapter 3: Infrastructure Security in the Product Lifecycle

Developers believe they require the flexibility to spin up a virtual machine, install
applications, and manage their environments. They do not want controls that lock
down administrator access to their systems, stop their ability to create environments,
or require dozens of approvals for modifying environments. The best path forward to
secure these environments is to work together with the development teams in estab‐
lishing policies, processes, controls, and tools specific for your organization. This
should include preconfigured environments (e.g., infrastructure as code) that can be
created, deployed, configured, and deleted.2 You should also require that any environ‐
ment accessible from the internet must have strict controls, rules, and policies to pre‐
vent malicious threats reaching into the environments. In situations where the
security is not sufficient, you should implement operational, technical, or manage‐
ment controls, also known as compensating controls, to raise the security posture.

Even with preconfigured environments, the standard IT security policies and controls
may be unrecognized in developer systems. Additional IT security practices should
be specifically created for these environments to detect data loss (e.g., intellectual
property, source code, private keys, or project files), intrusion by threat actors, and
malware. One proactive way to reduce risk is by requiring highly secured or encryp‐
ted communications, protocols, tools, and technologies such as a VPN (virtual pri‐
vate network), jump server (virtual machine to manage other systems), or bastion
host (provides access to a private network from external networks). However, encryp‐
ted communications can prevent monitoring tools from detecting intellectual prop‐
erty or data loss. For more information on other risks in the development lifecycle,
refer to Chapters 7 and 11.

Within organizations, the business applications and infrastructure may be configured
for alerts and connected to security operations centers (SOCs). However, the non‐
standard environments such as development are often not patched, and they may be
ignored by security monitoring tools. Controls, policies, and alerts must exist to
maintain the security of the development environments. However, be certain that
activities or alerts don’t impact production environments.

To reduce security risk, routinely examine the logs of the developer environments and the
tools connected to those systems. Monitoring tools should be trained to recognize devel‐
oper-specific activities to prevent false positives (incorrect results claiming an issue) when
issuing alerts or restricting activities. For example, admin-level tasks such as installing
applications, elevating access privileges, or running scripts for testing often trigger alerts
within security monitoring tools. One type of alert could be due to an unsigned (no digi‐
tal signature) script file because it had no information regarding the author of the file.3 By
reviewing existing logs, developers and IT security should be able to identify normal and
uncharacteristic behaviors, scripts, or programs within the tools and environments in
order to flag actual concerns when they arise.

Developer Environments | 41

Infrastructure Security Controls 01–02
Control IS-01: Implement policies, processes, and controls required for creating, con‐
figuring, updating, and operating environments.

Control IS-02: Log and monitor events such as access control, access elevation, per‐
missions modification, and object execution.

Code Repositories and Build Platforms
A development team must store code somewhere for daily use and preservation. In
today’s world, this is usually a cloud-hosted solution, such as GitHub, although some
teams may still retain code repositories on premises or in a private data center. Gen‐
erally, the development teams maintain these applications rather than IT administra‐
tors, who manage business applications. In Chapter 5, I describe the risks and source
code management (SCM) controls, such as multifactor authentication (MFA), that
should be applied to code repositories and build platforms as they should be for all
critical applications and confidential data within the organization. Within that chap‐
ter, I also discuss the Google SLSA (Supply-Chain Levels for Software Artifacts)
framework that organizations are using to secure the source code and build manage‐
ment process.

For the code repositories and build platforms, safeguards and controls must be put in
place to restrict access to only approved endpoints and also to carefully log and moni‐
tor all activity. You can restrict access to systems using zero-trust technologies and
reduce risk by frequently updating access keys. Similar to other high-value systems in
your organization, you should conduct penetration tests on the repositories and build
environments to identify where a malicious actor or threat can compromise the sys‐
tems, manipulate code, inject malicious code, or steal intellectual property.

The SolarWinds hack of 2020 is the most noteworthy example of a threat actor insert‐
ing malicious code into the software build process and thus compromising the soft‐
ware supply chain.4 Using the modified SolarWinds Orion software, the attackers
compromised hundreds of organizations and then specifically breached dozens of
companies and federal agencies through a “back door” that remained hidden for over
six months.5

Even with awareness of the SolarWinds hack, development and build environments
continue to be a significant risk in the software supply chain. Three years after the
SolarWinds event, the 3CX Desktop App had both its Windows and Mac software
versions compromised when a malicious actor injected malware into the 3CX desk‐
top applications through the build environment.6 Ironically, the malicious actor

42 | Chapter 3: Infrastructure Security in the Product Lifecycle

entered the 3CX systems using a software supply chain hack of the X_TRADER soft‐
ware package installed in the development environment.

Intellectual property code theft is also a real threat for a business, yet it is very diffi‐
cult to monitor and control. When a developer needs to modify code, the develop‐
ment tools (e.g., GitHub) download a local copy of the code to the developer’s system
or VPC. The developer makes changes locally before submitting (committing) new
code to the repository. Code repository monitoring and even behavior analytics tools
will not be able to identify problems once the code is no longer available in a man‐
aged environment, such as a developer system. I recommend informing the develop‐
ment team that, as a preventative measure to intellectual property loss, the code
repository will be monitored for downloads and activity. You can even have an inter‐
nal dashboard or SOC that monitors for patterns in code commits, and therefore any
deviation from the pattern can trigger alerts to the SOC for investigation and action.
Tools can also generate alerts when certain conditions are met, such as a full down‐
load of a code project or a certain volume of data, which could indicate behaviors for
intellectual property theft.

Additional security controls you can implement include disabling external mass stor‐
age devices and only allowing legitimate systems to access the code repositories. Ulti‐
mately, the SCM controls for code repositories need to be as strong as possible due to
the potential risk of intellectual property or data loss, which I discuss in Chapter 7.
Given the data loss risks that could result in severe business risks if someone grants
the wrong person access to the code repository, I would not allow teams to self-
manage the identity and access management (IAM) functions of the code repository.
The best approach is to connect an IAM or single sign-on (SSO) solutionto the code
repository, so the moment someone loses access to the corporate environment, they
will also lose their access to the code repository. Even when the code repository is in a
cloud environment and not connectable to an IAM or SSO solution, the IT team can
include access creation and removal in its standard procedures, which will reduce
risk to the organization when access control is managed quickly when all other access
is terminated.

When establishing access, use access control techniques that will allow a developer or
system to retrieve only the code needed to perform the work (“need-to-know”) and
limit the code repository functionality to only the necessary capabilities (e.g., read-
only, normal, privileged, administrative). For example, an intern can be restricted to
only one of the code libraries without the capability to delete code or database tables.
Without proper access controls on all the systems, entire code repositories or, worse,
an entire production database can be deleted, which is a true story from an intern’s
first day at work.7

Code Repositories and Build Platforms | 43

Infrastructure Security Controls 03–04
Control IS-03: Limit access to only approved endpoints, require multifactor authenti‐
cation, and integrate with an identity and access management or single sign-on sys‐
tem. Use least-privilege and need-to-know principles for all accounts (e.g., user,
admin, service, application).

Control IS-04: Log and monitor all accounts, whether for users or services, for
unusual behavior and unwarranted uploads or downloads. Log and monitor all
administration account access and actions through security management tools and
security operation centers. Continuously monitor downloads for volume and unusual
behavior patterns.

Development Tools
In addition to code repositories, there are many other tools and applications in use by
development teams today. The tools include, but are not limited to, code editors, inte‐
grated development environments (IDEs), code development frameworks, debugging
and testing tools, version control systems, continuous integration/continuous deploy‐
ment (CI/CD) tools, management systems for Agile or defect tracking, collaboration
tools, and cloud management tools.8 It is important for you to maintain a list of all
the tools and applications used in the development process and monitor the technol‐
ogies for cybersecurity risk. From “Code Repositories and Build Platforms” on page
42, Controls IS-03 and IS-04—which focus on access control and monitoring—are
applicable for any multi-user or hosted tool.

An additional risk to consider for all development tools is the authenticity and integ‐
rity of the tool itself. If possible the tools and applications should be signed, meaning
the author guarantees that the code is not altered, to ensure authenticity. It is com‐
mon for developers to locate tools, plugins, or scripts in public project repositories.
However, these items are often unsigned or they may be signed even though they
contain back doors, key loggers, logic bombs, or other malicious code. You must con‐
sider all development tools, especially open source and public domain tools, at risk
for software supply chain attacks. In 2015, the XcodeGhost malware mimicked
Apple’s Xcode development environment, affecting over four thousand applications,
according to the security research company FireEye.9 Similar to website typosquat‐
ting (malicious actors waiting for you to type appel.com instead of apple.com, for
example), malicious actors take advantage of common tool names by replacing them
with compromised applications, packages, and code.

For the sake of agility, development organizations may not be following a corporate
assessment process to check the security posture of the development tools. This
increases software supply chain risk since source code may be in contact with dozens

44 | Chapter 3: Infrastructure Security in the Product Lifecycle

of insecure tools and applications. It also provides opportunities for infected tools to
manipulate lines of code or give entry to malicious actors. In 2022, the security team
for the Jenkins open source automation server announced 29 zero days (a vulnerabil‐
ity for which no fix was available when the vulnerability became public) in an equal
number of plugins.10 The impacted plugins were identified in more than 22,000
installs, which left them vulnerable to future exploitation. This one situation also
highlights the security risk of exposing development tools and environments to the
internet.

As supply chain security attacks continue to increase, organizations are now request‐
ing their vendors to provide origin and provenance information. Simply put, prove‐
nance (or pedigree) is the history of changes made and who made the changes. For
example, if there had been origin and provenance information captured from the
beginning of Microsoft paint.exe, there would have been origin records showing
ZSoft Inc. as the original development company in Marietta, Georgia, US. The prove‐
nance information would have also shown me and colleagues as authors of different
components in the software. Current origin information would include Microsoft
Inc. in Seattle, Washington, US (and likely other locations). The current provenance
information would have hundreds of thousands of changes and developers, poten‐
tially also using open source packages, in the decades since the application was
created.

Although it is not possible to turn back time and capture provenance for previously
created code, software developers should capture this information going forward
using development tools. In your organization, review the development tools in use
to see what provenance capabilities are present. Many development tools use the
W3C provenance specification to provide a consistent model for provenance infor‐
mation.11 However, not all development tools capture origin information. I discuss
software provenance and origin in more detail in Chapter 8.

In summary, every organization should have a process for assessing the authenticity
and integrity of tools and applications, regardless of the size of the organization or the
tool itself. You can use provenance to validate authenticity for the development tools
in your organization and then leverage some of those tools to capture provenance
information for the software you build. This lowers the risk to your organization by
assessing the upstream software supply chain risk, and it also lowers the risk for any
custom-built applications.

Infrastructure Security Control 05
Control IS-05: Maintain an asset inventory for all tools, scripts, and APIs used by the
development organization. Using origin and provenance information, validate the
authenticity and integrity of the information in the asset inventory.

Development Tools | 45

Labs and Test Environments
There are multiple physical, logical, and virtual environments as part of the software
supply chain. Although it is less common now for organizations to have on-site data
centers with test servers lined up in a network rack, these environments still exist in
various forms and need proper security controls. As I previously discussed in “Devel‐
oper Environments” on page 40, shadow IT practices can happen with labs and test
environments. Frequently these environments do not have privileged access controls
in place but instead allow users to access all areas of the environment to make their
changes. Although I understand the need for environment flexibility, lab and test
environments are highly susceptible to software supply chain attacks and must have
detailed audit logs and continuous monitoring. Therefore Control IS-02 (access con‐
trol, logging, and monitoring) is also applicable for every lab or test component,
product, system, or environment.

If physical products or components are required for the labs or environments, such as
the IoT environment shown in Figure 3-2, these, too, may introduce security risks. IT
malware and intrusion detection scanning capabilities do not typically support com‐
plex IoT, OT (operational technology), or cyber physical devices, such as drones,
which may use real-time operating systems such as Embedded Linux. As mentioned
in the previous sections of this chapter, it is critical to have an asset inventory of both
the hardware and software in every environment. Using the asset inventory, the
development, IT, and security teams must agree on access, logging, monitoring, and
security controls.

Security risks increase when there are a number of different environments; a single
product team may have dozens of development, lab, and test environments to sup‐
port specific use cases. These environments may lay dormant or inaccessible for a
period of time until needed for specific development or testing purposes. Patch man‐
agement processes (upgrading the software versions) may not exist, meaning the
environments are susceptible to known exploitable vulnerabilities. Although it’s not
always possible to have fully patched systems due to backward compatibility and
interoperability reasons, where possible the environments should be patched and
monitored for threats. Periodic reviews and penetration testing of key assets, applica‐
tions, and infrastructure can help identify the weakest links in the chain, which can
then be patched in an effort to reduce the potential attack surface.

46 | Chapter 3: Infrastructure Security in the Product Lifecycle

Figure 3-2. IoT sample test lab environment

An additional risk is the possibility of a lateral movement attack—an attacker moving
between systems, environments, or networks—within these uncontrolled environ‐
ments on generally unsegmented networks. For example, an attacker may take advan‐
tage of the vulnerabilities in an unpatched test environment and move onto an
organization’s financial accounting platform. In the VMWare Global Incident
Response Threat Report for 2022, companies reported that lateral movement
appeared in 25% of attacks.12 You should utilize threat modeling to identify weak‐
nesses in the applications or systems, which can then be addressed with mitigating
and compensating controls.13 Organizations are now implementing various compen‐
sating controls and techniques to prevent lateral movement, including segmentation,
microsegmentation, air gapping (removing network interfaces), and zero trust.14

Many of these techniques can be used for the lab and test environments.

Infrastructure Security Controls 06–07
Control IS-06: Maintain patches and updates, where appropriate, for all applications,
systems, and environments.

Control IS-07: Identify threats to applications, systems, and environments. Implement
mitigating and compensating controls to prevent threats.

Labs and Test Environments | 47

Preproduction and Production Environments
Preproduction (or staging) and production environments are usually managed by
operations teams to maintain business continuity for internal or external users. In
many modern development lifecycles, testing or preproduction environments may
not even exist. As with all previously mentioned environments, you should imple‐
ment least-privilege controls, log and monitor events, and pay careful attention to
privileged-access actions. You should also prioritize any events and alerts generated
from the production environment, looking specifically for malicious actors or events
such as DDoS (distributed denial-of-service) attacks, which can overwhelm the envi‐
ronments with internet traffic.

When possible, connect these environments to a SOC, SIEM (security information
and event management), or SOAR (security orchestration, automation, and response)
system and process. Rapid detection of unauthorized events can potentially reduce
damage and limit risk. Famous “remote code execution” exploits such as Log4j
present immediate risk to vulnerable systems. In less than two weeks after the Log4j
disclosure, Akamai Technologies Inc. observed millions of Log4j exploit attempts
each hour.15 Malicious actors are constantly scanning for vulnerable environments,
which requires extreme diligence from operations teams to keep environments
patched to prevent serious incidents such as exploitation, corruption, and data
breaches.

Infrastructure Security Control 08
Control IS-08: Prioritize logging, monitoring, and patching of production environ‐
ments. Integrate with SOC/SOAR/SIEM processes and systems.

Software Distribution and Deployment Locations
Software distribution can happen in a number of ways, as shown in Figure 3-3: soft‐
ware packages placed in a specific distribution location; deployment through applica‐
tion stores and update services; or deployment of code or services to a cloud
environment. Software packages generally are a collection of installation executables,
application executables, configuration files, help files, templates, and more. These
packages can be placed into many locations such as distribution servers (usually
internal to a company), download centers (e.g., printer drivers located on a manufac‐
turer website), or application stores (Apple App Store or Google Play). In the cloud
world there are deployment packages or containerized services where small objects
are moved to an environment. For more information on cloud infrastructure and
deployment, see Chapter 6.

48 | Chapter 3: Infrastructure Security in the Product Lifecycle

Figure 3-3. Software distribution channels

The software package may move along a path from the build environment to a stag‐
ing environment to a production environment, or directly from development to pro‐
duction. The package may also move to a download repository or application store
that contains applications for laptops, tablets, cell phones, IoT devices, or OT devices.
The various software distribution locations present a risk because at any point along
the distribution process, a malicious actor can replace or modify the software package
or deployment, as was seen when malware was included in signed “live chat” software
downloadable from a company’s website in September 2022.16 One method to secure
software, as described in detail within Chapter 5, is signing software before distribut‐
ing it to the various channels. This allows operating systems to automatically validate
the authenticity of the software, assuming the signing credentials have not been sto‐
len by a malicious actor.

To begin evaluating the potential risk points, you should map the software distribu‐
tion processes to identify all the locations where a malicious actor or threat can
manipulate the package or deployment. Pay careful attention to any locations or
download centers where a collection of software packages may be stored for end-user
access. Malicious actors may download and modify the software before creating fake
websites. As mentioned earlier in the chapter, typosquatting of websites is a common
practice to distribute fake software packages.17 Downloading a software package from
any site other than the direct publisher or manufacturer should be seen as risky.

Software Distribution and Deployment Locations | 49

Infrastructure Security Control 09
Control IS-09: Document all software distribution paths and locations. Monitor dis‐
tribution locations and deployments for malicious activity.

Manufacturing and Supply Chain Environments
For software and firmware that move through manufacturing and supply chain envi‐
ronments, as shown in Figure 3-4, there are additional risks and controls to consider.
As mentioned in “Software Distribution and Deployment Locations” on page 48, the
software or firmware must be signed and carefully monitored for malicious activity.
Manufacturing and supply chain environments are another set of environments that
may not normally be managed by IT departments. These environments usually have a
number of unique systems—often running older Microsoft Windows versions—and
OT devices and systems. For example, sensors and programmable logic controls
(PLCs) are often positioned throughout a manufacturing line to operate different
functions. More and more of these devices are connectable to a network and there‐
fore should be secured using zero-trust technologies, segmenting networks, network
access control, firewalls, wireless access restrictions, and additional compensating
controls.

Figure 3-4. Manufacturing and supply chain process and environments

Manufacturing and supply chain environments have suffered over the past years from
ransomware attacks such as WannaCry and NotPetya.18 Similar to IT components
and systems, the OT devices and systems must be included in an asset inventory, as
well as follow proper security practices and manufacturer guidelines for securing the

50 | Chapter 3: Infrastructure Security in the Product Lifecycle

devices. Monitoring for intrusions and logging is just as important in an OT environ‐
ment, although usually it is managed with specific OT monitoring tools. As with
other environments, patch management should be performed regularly during
maintenance cycles.

Infrastructure Security Control 10
Control IS-10: Maintain an asset inventory (including tools, applications, services,
and APIs) for the manufacturing and supply chain environments. Secure the environ‐
ments with proper security and compensating controls. Log and monitor all events
for devices and systems that have access to software or firmware.

Customer Staging for Acceptance Tests
In some software delivery workflows, there can be a staging area that holds the
production-level product or systems along with specialized configurations for the
customer. These environments may be cloud environments, physical systems, or a
combination (hybrid). Sometimes the staging environments have specific devices, set‐
ups, and configurations requested for the customer environment. For example, the
customer may be using one specific brand of firewalls, and the staging environments
are built with those firewalls in mind.

The responsibility of the staging environments may sometimes be with the customer,
the manufacturer, or with a third party such as a service provider or engineering firm.
It is important to establish clear guidelines on the cybersecurity responsibility for
those systems during the contracting process. There needs to be clear ownership of
who will be responsible for the infrastructure of the environment to ensure that no
malicious actors or threats enter that environment while it is being established, con‐
figured, and tested. If the environment is a physical product, there should also be
physical security controls to prevent any intrusions. Sometimes these environments
will not have established logging and monitoring yet, and thus the responsibility for
any changes made to the system should also be included in the contract agreement.
And with all systems, personnel must be using secure endpoints with least-privilege
permissions to access the staging environments.

Infrastructure Security Control 11
Control IS-11: Contract agreements must clearly state the cybersecurity responsibili‐
ties for the infrastructure, access, logging, and monitoring throughout the customer
staging process. This includes any customer-specific requirements, personnel access
procedures, and change logs.

Customer Staging for Acceptance Tests | 51

Service Systems and Tools
Infrastructure concerns exist even after customer delivery or deployment. Once the
production environments have been established, there are potentially service applica‐
tions, tools, and systems that have access to the product or environments; the deploy‐
ment of these items may not have been tested or inspected during the deployment
process. Examples of service tools include remote access tools, such as TeamViewer
and Microsoft Remote Desktop as well as diagnostic tools such as WireShark and
Nmap. There have been many cyberattacks using remote access tools such as two
attacks in 2021 on wastewater treatment plants.19 Service tools, especially open source
tools, should be evaluated, documented, and deployed securely in production envi‐
ronments. Pay careful attention to any scripts such as PowerShell, which is frequently
used for automation but can be leveraged by malicious actors, and confirm that any
debug capabilities have been removed.20

Similar to the development tools, any systems or tools used during the service process
should be assessed and monitored for threats. In situations where there is service per‐
sonnel accessing customer environments or systems, the endpoints themselves
should be complying with infrastructure controls. Endpoints can include items such
as laptops, cell phones, tablets, or even special IoT diagnostic tools, which could have
USB, WiFi, or Bluetooth connectivity.

Infrastructure Security Control 12
Control IS-12: Maintain an asset inventory for all applications, systems, tools, and
scripts used by the service organization. Monitor all service endpoints and tools for
malicious threats.

Summary
Infrastructure security is well recognized as important for enterprise applications and
systems, but may not get the same attention and oversight in development, lab, or
manufacturing environments. These environments and processes present security
risks that can be reduced with access controls, monitoring, and logging, similar to
what occurs for enterprise applications and systems. Adding the infrastructure con‐
trols from this chapter to an existing IT controls framework will provide an end-to-
end set of controls for the software supply chain infrastructure and processes. In
Chapter 4, I’ll describe the first foundational element, a secure development lifecycle,
to establish within an organization that is building or buying software.

52 | Chapter 3: Infrastructure Security in the Product Lifecycle

References
1 “The 18 CIS Critical Security Controls”, Center for Internet Security®, accessed
December 8, 2023.

2 John Rofrano, “Creating Reproducible Development Environments”, Medium,
April 12, 2021.

3 Riya Sander, “What Is a Code Signing Certificate? How Does It Work?” IEEE
Computer Society, August 31, 2021.

4 Sudhakar Ramakrishna, “An Investigative Update of the Cyberattack”, Orange
Matter, May 7, 2021.

5 “SolarWinds Cyberattack Demands Significant Federal and Private-Sector
Response (Infographic)”, US Government Accountability Office, April 22, 2021.

6 Jeff Johnson, Fred Plan, Adrian Sanchez, Renato Fontana, Jake Nicastro, Dimiter
Andonov, Marius Fodoreanu, and Daniel Scott, “3CX Software Supply Chain Com‐
promise Initiated by a Prior Software Supply Chain Compromise”, Mandiant (blog),
October 23, 2023.

7 David Cassel, “The Junior Dev Who Deleted the Production Database”, The New
Stack, June 10, 2017,.

8 CI/CD is a process for frequent integration (compiling, linking, or merging) and
delivery (also known as deployment), usually through automation.

9 Dan Goodin, “Apple Scrambles after 40 Malicious ‘XcodeGhost’ Apps Haunt App
Store”, Ars Technica, September 21, 2015.

10 Sergiu Gatlan, “Jenkins Discloses Dozens of Zero-Day Bugs in Multiple Plugins”,
Bleeping Computer, July 1, 2022.

11 “PROV-Overview”, World Wide Web Consortium, April 30, 2013.

12 VMware, Global Incident Response Threat Report, 2022.

13 Mitigating controls may reduce the chances of a threat occurring, while compen‐
sating controls are alternative methods to threat reduction. For example, restricting
user access can be a mitigation control, and using a multifactor authentication token
can be a compensating control.

14 Zero trust is a security framework requiring all users and systems to be continu‐
ously authenticated and authorized. For more information, see Mary K. Pratt, “What
Is Zero Trust? A Model for More Effective Security”, CSO, March 7, 2023.

15 “Threat Intelligence on Log4j CVE: Key Findings and Their Implications”, Aka‐
mai (blog), December 17, 2021.

Summary | 53

https://www.cisecurity.org/controls/cis-controls-list
https://medium.com/nerd-for-tech/creating-reproducible-development-environments-fac8d6471f35
https://www.computer.org/publications/tech-news/trends/what-is-a-code-signing-certificate
https://orangematter.solarwinds.com/2021/05/07/an-investigative-update-of-the-cyberattack
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://thenewstack.io/junior-dev-deleted-production-database
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store
https://www.bleepingcomputer.com/news/security/jenkins-discloses-dozens-of-zero-day-bugs-in-multiple-plugins
https://www.w3.org/TR/prov-overview
https://www.vmware.com/content/dam/learn/en/amer/fy23/pdf/1553238_Global_Incident_Response_Threat_Report_Weathering_The_Storm.pdf
https://www.csoonline.com/article/3247848/what-is-zero-trust-a-model-for-more-effective-security.html
https://www.csoonline.com/article/3247848/what-is-zero-trust-a-model-for-more-effective-security.html
https://www.akamai.com/blog/security/threat-intelligence-on-log4j-cve-key-findings-and-their-implications

16 “CrowdStrike Falcon Platform Identifies Supply Chain Attack via a Trojanized
Comm100 Chat Installer”, CrowdStrike (blog), September 30, 2022.

17 Adam Rowe, “Fake Zoom Websites Are Tricking Users into Downloading Mal‐
ware”, Tech.Co, September 27, 2022.

18 Yoni Shohet, “Ransomware Attacks Hit Manufacturing—Are You Vulnerable?”
IndustryWeek, March 26, 2019.

19 Kevin Collier, “50,000 Security Disasters Waiting to Happen: The Problem of
America’s Water Supplies”, NBC News, June 17, 2021.

20 Ionut Arghire, “Hackers Are Loving PowerShell, Study Finds”, SecurityWeek,
March 27, 2019.

54 | Chapter 3: Infrastructure Security in the Product Lifecycle

https://www.crowdstrike.com/blog/new-supply-chain-attack-leverages-comm100-chat-installer
https://www.crowdstrike.com/blog/new-supply-chain-attack-leverages-comm100-chat-installer
https://tech.co/news/fake-zoom-websites-downloading-malware
https://tech.co/news/fake-zoom-websites-downloading-malware
http://Tech.Co
https://www.industryweek.com/technology-and-iiot/article/22027363/ransomware-attacks-hit-manufacturing-are-you-vulnerable
https://www.nbcnews.com/tech/security/hacker-tried-poison-calif-water-supply-was-easy-entering-password-rcna1206
https://www.nbcnews.com/tech/security/hacker-tried-poison-calif-water-supply-was-easy-entering-password-rcna1206
https://www.securityweek.com/hackers-are-loving-powershell-study-finds

CHAPTER 4

Secure Development Lifecycle

Secure software is software that has been designed and developed in a way that will
continue to function normally even when subjected to malicious attacks. A secure
development lifecycle (SDL, although your organization may use another name) con‐
sists of activities that strengthen an application or product’s security posture during
the software development lifecycle (SDLC). This can also be known as a secure soft‐
ware development lifecycle (S-SDLC) or a Secure Software Development Framework
(SSDF).

There are three primary reasons to use an SDL as early and often as possible: to
reduce vulnerabilities, reduce the impact of vulnerabilities, and address the original
causes of vulnerabilities. As with any software defect, it’s always cheaper and more
effective to identify these issues early, and “early” goes all the way back to the initial
creation and design of the software. An SDL can provide customers with assurance
that a formal process has been followed and can also prevent organizations from
repeating the same security mistakes with each release.

As we saw in previous chapters, software supply chain security requires secure devel‐
opment as one of the foundational elements and is now a required element in many
cybersecurity legal agreements and certifications. Your organization may already have
SDL processes within its existing SDLC or DevOps processes, even if they aren’t
called as such. This chapter will discuss the details of secure development lifecycles,
augmenting SDLCs, and the more popular SDLs you can use in your organization.
For a more detailed discussion of secure development, I recommend the book Alice
and Bob Learn Application Security by Tanya Janca.1

The decision of which SDL to use is usually up to your organization and almost
always requires the secure development lifecycle to be adapted to your processes.
Once your organization has selected an SDL, document the decision and appropriate
details in a corporate SDL policy.

55

Secure Development Lifecycle Control 01
Control SDL-01: Maintain a secure development lifecycle (SDL) framework and pol‐
icy that requires employees, contractors, and third parties to follow SDL practices for
applications and products.

Key Elements of an SDL
An SDL is the foundation for a secure software supply chain. There are five key ele‐
ments of an SDL that exist across the various frameworks: security requirements,
secure design, secure development, security testing, and vulnerability management.
Although you can reduce risk by implementing key elements—such as secure
testing—without an SDL, you may still find yourself at a disadvantage since the devel‐
opment team cannot be certain that it has tested what truly needs testing. An SDL’s
prescriptive process and controls will enable you to implement a secure software sup‐
ply chain with secure requirements, design, and development in a reproducible
process.

Security Requirements
Security requirements may be defined by laws, regulations, SDL frameworks, and
standards, or identified by customers, marketing, internal guidelines, known vulnera‐
bilities, and threat analysis. It is not unusual to have hundreds of security require‐
ments of varying complexity as part of a product, application, or system. For
example, marketing requirements for data security can be high-level, such as “per‐
sonal data shall only be seen by the user,” and then decomposed into dozens of more-
detailed, lower-level security requirements, such as “data in transit must be
encrypted” and “user access must be authenticated.”

Sometimes there are specific regulations associated with the marketing or technical
requirements. For example, there could be cryptography requirements at the market‐
ing level, but regulations may require NIST FIPS 140 for cryptographic modules.2
SDL frameworks can also introduce requirements such as the file integrity require‐
ment in ISA/IEC 62443, which ensures users have a way to verify that software has
not been altered. Before building applications, you should identify any standards that
may apply or certifications you want to pursue, such as the CREST OVS (OWASP
Verification Standard) for web and mobile application security standards.3

Product, application, system, and infrastructure security requirements coming from
internal technical guidelines, known vulnerabilities, and threat analysis must be con‐
tinuously updated to address new threats and attack paths. The typical approach for
threat analysis comes in the form of threat modeling—a process by which potential

56 | Chapter 4: Secure Development Lifecycle

threats, such as structural vulnerabilities or the absence of appropriate safeguards,
can be identified and enumerated and countermeasures prioritized.

Another threat analysis approach is to use knowledge bases of curated adversary
techniques from real-world observations, such as the MITRE ATT&CK® framework
with attack techniques for enterprise systems, mobile applications, and industrial
control systems (ICS).4 MITRE techniques may include procedure examples, mitiga‐
tions, detection information, and subtechniques.

The Cyber Kill Chain® framework, developed by Lockheed Martin, is another frame‐
work for the identification and prevention of cyber intrusions. The seven-phase
attack framework shows the adversary’s actions alongside the defender’s actions to
prevent the intrusion.5

Similar to the MITRE frameworks, the Open Software Supply Chain Attack Refer‐
ence (OSC&R) specifically addresses the techniques used to attack software supply
chains. In addition to using the information and controls within this book, I recom‐
mend you carefully review the OSC&R framework to identify requirements for your
organization, products, and applications.6

For some software supply chain security risks, you can transform the security control
into a security requirement. One such example would be the Infrastructure Security
Control IS-08 for patching, as seen in Chapter 3. An application security requirement
or user story specifically to “auto-update software” would resolve part of the IS-08
security control.

At some point, all of these security requirements should be documented in a require‐
ments or user stories database—including the requirements that map to the SDL con‐
trols and governance process. Traceability between these requirements, the threat
models, and secure test cases are important for validating the requirements prior to a
software release and satisfying proof of controls for auditors. At least annually you
should review the existing security requirements for enhancements or additions fol‐
lowing any changes or improvements to the SDL process and controls as well as new
requirements and threats that may have surfaced.

Secure Development Lifecycle Control 02
Control SDL-02: Document and maintain security requirements for applications and
products. Include security requirements that are required by processes, controls,
applicable laws, and regulations.

Key Elements of an SDL | 57

Secure Design
The concept of secure design (or secure-by-design) is not only about architecture and
infrastructure but also about the security requirements implemented into the system.
Within a product or application, secure design is when the team has gone through
activities to evaluate the requirements and potential threats to limit risk. Risk to soft‐
ware supply chain security is greatly reduced when secure design activities such as
threat modeling are performed. Even products that have been previously designed
will benefit greatly from a complete threat model that analyzes entry points, code,
services, protocols, APIs, and more.

Threat modeling must be a team sport, or as the Threat Model Manifesto states, there
should not be a single hero threat modeler, but multiple people providing representa‐
tions and views to illuminate different problems.7 Threat models should be consid‐
ered living artifacts that the team must reexamine when architecture, technology, or
threats change. This demonstrates that threat models should be updated frequently
since the threat landscape is shifting rapidly. Each time risks are identified through
threat models, additional security requirements must be added to the product or
application.

Additional techniques for securing the product, application, or system design
include:

• Analyzing and selecting technologies, components, programming languages, and
infrastructure with reduced risk compared to other choices

• Utilizing modular code for easier code updates or reuse
• Isolating critical components and security components from other components

during execution
• Providing features for secure deployment, operation, and maintenance

Another type of secure design is “privacy by design” (sometimes called PbD). This
includes data security, data protection, and data localization requirements for per‐
sonal or business data. Considering PbD early in the design process can significantly
reduce rearchitecting databases, structures, and common methods such as encryption
to meet changing privacy requirements.

Secure Development Lifecycle Control 03
Control SDL-03: Use secure-by-design and privacy-by-design concepts when design‐
ing applications and products. Conduct threat modeling on all code, services, sys‐
tems, infrastructure, APIs, and protocols.

58 | Chapter 4: Secure Development Lifecycle

Secure Development
Secure development, another key element in an SDL, involves the methods, tech‐
niques, and practices developers should follow and use during code development.
This includes important areas such as proper error handling, fault handling, memory
management, and secure coding standards. Secure coding standards should always
prevent back doors, debug interfaces, error information, or intellectual property from
being released. Secure coding rules must be specific for the technology and languages
your organization uses, but if your organization does not have secure coding stand‐
ards in place, refer to “Code Quality” on page 78 for a list of various standards.

There are many tools available that review code for secure coding risks. Code quality
and software composition analysis (SCA) tools are designed to locate faults in free
and open source software (FOSS or OSS) by examining code for known vulnerabili‐
ties. These tools can also identify license information for potential compliance risks.
Some tools even look for hardcoded credentials or compliance to secure coding rules.
For more information on open source or code analysis, refer to Chapter 5.

When selecting tools, check for compatibility with applications, operating systems, or
platforms. Although OWASP (Open Worldwide Application Security Project) materi‐
als were originally designed for web applications, they have expanded to cover more
than web technologies. OWASP is known in software development for its “OWASP
Top 10” project, which outlines the 10 most critical security concerns for web appli‐
cation security and is revised approximately every three to four years.8 The 2017
OWASP list had quite a number of frontend security risks, but the updated 2021 list
also highlights risks due to poor SDL practices such as software integrity failures,
insecure design, and vulnerable and outdated components.

Secure Development Lifecycle Control 04
Control SDL-04: Follow secure coding rules, leverage tools, and mitigate known
weaknesses to develop secure products and applications.

Security Testing
Security testing is the fourth key element in an SDL. Like threat modeling, it’s never
too late to start a security testing practice. As shown in Figure 4-1, there are multiple
ways to perform security testing, including static application security testing (SAST),
dynamic application security testing (DAST), interactive application security testing
(IAST), runtime application security protection (RASP), and penetration testing.9
Fuzz testing, which is an automated software testing method that injects malformed,
invalid, or unexpected inputs in order to reveal software defects and vulnerabilities, is
an effective form of security testing. Additional types of testing include cloud

Key Elements of an SDL | 59

container and deployment testing, as discussed in Chapter 6. The various testing
methods should be used in combination with each other and will vary depending on
the product, application, system, or infrastructure.

Figure 4-1. Application security tools and techniques

These tools are only effective at reducing security risk when mitigations (reducing the
impact) or remediations (removing the threat) are performed on the findings. Also,
these tools may locate hundreds or thousands of vulnerabilities, and most are ineffec‐
tive in determining if the vulnerability can be exploited. Prioritization, tracking, and
V&V (verification and validation) security testing should be used in conjunction with
testing tools.

Secure Development Lifecycle Control 05
Control SDL-05: Execute security testing using various tools and techniques on appli‐
cations and products.

Vulnerability Management
Although vulnerability management activities are contained within the primary SDL
practices, this subprocess is critical for identifying, evaluating, and remediating secu‐
rity weaknesses. Throughout the development lifecycle, there are many activities that
can identify vulnerabilities, such as during threat modeling, development, code analy‐
sis, scanning, and testing. This continuous process is vital for securing products and
applications until they reach the end of their lifecycle. To demonstrate your organiza‐
tion’s maturity, you can even choose to certify your vulnerability handling process to
the ISO/IEC 30111:2019 standard.10

In a perfect world, all vulnerabilities would be fixed before releasing the product or
application. Unfortunately, we do not live in a perfect world, and thus every release
has vulnerabilities that may or may not be exploitable. In 2021, an exploitable
vulnerability in Kaseya’s remote monitoring tool gave malicious actors the

60 | Chapter 4: Secure Development Lifecycle

opportunity to distribute malware to over 1,000 customers before Kaseya could take
the software offline.11

When a vulnerability is found, it is usually rated with a scoring system, such as the
Common Vulnerability Scoring System (CVSS) standard designed by the Forum of
Incident Response and Security Teams (FIRST).12 However, CVSS is not perfect, and
therefore several other scoring and ranking systems now exist to help prioritize
vulnerabilities.

The CVSS standard assigns severity scores to vulnerabilities on a scale of 0 to 10, with
10 being the most severe. The current version of CVSS is a calculated score, generally
referenced in vulnerability catalogs, consisting of many metrics, including the attack
complexity and what privileges are required. There are three other scoring and rank‐
ing systems in use: the Stakeholder-Specific Vulnerability Categorization (SSVC)
model, the Exploit Prediction Scoring System (EPSS) model, and the Known
Exploited Vulnerability (KEV) catalog.

The SSVC model, designed by Carnegie Mellon University’s Software Engineering
Institute and the US Cybersecurity & Infrastructure Agency (CISA), is a decision tree
used to prioritize vulnerabilities based on five values, including exploitation status
and technical impact.13 In the same time period, EPSS was designed by FIRST to esti‐
mate the likelihood that a vulnerability will be exploited in the wild.14 For ease of use,
however, the searchable or machine-readable CISA KEV catalog is continuously
updated with vulnerabilities that are currently being exploited.15

Ultimately when prioritizing vulnerabilities, I encourage you to begin with remediat‐
ing KEVs first, and then the critical and high CVSS vulnerabilities. Remediation can
take many forms, such as compensating controls, patching, updating, or replacing the
source code. Ideally, all third-party libraries are kept up to date with the latest security
patches applied in the source code, but there are situations where the only option is to
implement compensating controls in order to prevent exploitation.

In the situation where a third party has reported a vulnerability, you should follow
your organization’s vulnerability handling process, and then disclose the mitigations
or remediations taken according to your organization’s disclosure policies, as dis‐
cussed in “Vulnerability Disclosures” on page 137.

Secure Development Lifecycle Control 06
Control SDL-06: Maintain a vulnerability management framework, vulnerability han‐
dling policy, and vulnerability disclosure policy for identifying, evaluating, remediat‐
ing, and disclosing vulnerabilities to external parties.

Key Elements of an SDL | 61

Augmenting an SDLC with SDL
Depending on your organization, you may already have a software development life‐
cycle (SDLC) with an SDL integrated into it. For those that do have an SDLC without
security considerations, you should adjust existing SDLC processes, gates, reviews,
templates, checklists, and training to integrate the key SDL elements. By doing so, the
SDL will be less of a “checklist” and more of a natural task in the overall development
process. Ultimately you want your SDL to be fully integrated and part of the natural
day-to-day mindset of your teams, including management, as you develop your appli‐
cations and products.

The following sections will describe the more popular SDL standards and frame‐
works. The market to which you sell your application or product can also dictate
which SDL would be better received by your customers. If you have not already adop‐
ted an SDL, I recommend augmenting your SDLC with ISA/IEC 62443-4-1 (the most
comprehensive) or NIST SSDF (rapidly gaining acceptance and free).

ISA/IEC 62443-4-1 Secure Development Lifecycle
The International Society of Automation (ISA), the International Electrotechnical
Commission (IEC), and the International Organization for Standardization (ISO)
collaborated to create and release the “62443-4-1:2018 Secure product development
lifecycle requirements” (hereafter referred to as “4-1 SDL”), which are available for
purchase on the ISA and IEC web stores.16 The 4-1 SDL standard specifies secure
development process requirements for industrial automation and control systems
products. These process requirements can be applied to new or existing software or
firmware products.

The 4-1 SDL standard is the most robust SDL available for developing software and
firmware. The technical committee that created the standard had taken many inputs
from the available SDLs, security frameworks, security standards, and industry expe‐
rience securing critical systems. The 4-1 SDL standard is one part of the overall
ISA/IEC 62443 series, which provides standards for components, systems, integra‐
tions, deployments, and operations.17 The 4-1 SDL standard is a baseline requirement
for products and systems to receive additional ISA/IEC 62443 certifications, but as an
SDL, it is broadly applicable for any product or application, not just for those in
industrial systems.

The following list notes the eight practices within ISA/IEC 62443-4-1 SDL, as shown
in Figure 4-2:

• Security management
• Specification of security requirements
• Secure by design

62 | Chapter 4: Secure Development Lifecycle

• Secure implementation (development)
• Security verification and validation testing
• Management of security-related issues (vulnerabilities)
• Security update documentation
• Security guidelines

Figure 4-2. Eight practices of ISA/IEC 62443-4-1

The MDCG 2019-16 (Medical Device Coordination Group Document—Guidance on
Cybersecurity for medical devices) document also uses these same eight practices.18

Organizations that develop products for industrial control systems (ICS), which are
used in manufacturing, energy systems, water treatment, and more, often use 4-1
SDL as the foundation for their corporate SDLs and certify their global SDL frame‐
works through independent third-party certifiers. 4-1 SDL is a strong, solid frame‐
work for software and firmware, but needs some updates to reflect requirements for
cloud-hosted applications and small Agile teams.

Augmenting an SDLC with SDL | 63

NIST SSDF
The United States National Institute of Standards and Technology (NIST) produces
many supply chain security documents and standards, one of which is NIST Special
Publication 800–218. The NIST SP 800-218 document is better known as the “Secure
Software Development Framework (SSDF) Version 1.1: Recommendations for Miti‐
gating the Risk of Software Vulnerabilities,” or shortened as SSDF.19 The February
2022 document, current at the time of writing, includes an impressive cross-reference
to the various secure software development frameworks. You can leverage this docu‐
ment for augmenting or establishing secure SDLC practices for your software
suppliers.

The SSDF is organized into four main practice areas:

• PO: Prepare the Organization
• PS: Protect Software
• PW: Produce Well-Secured Software
• RV: Respond to Vulnerabilities

SSDF is a good foundation for an SDL, but it is not comprehensive enough to estab‐
lish a secure software supply chain even when incorporating the NIST CSF (as
described in Chapter 2). To evaluate and identify the risks in the entire software sup‐
ply chain, you will need multiple frameworks or the core set of controls as identified
throughout this book.

The SSDF does not provide specific guidance on implementing each SDL practice or
control. However, there is an excellent supplemental spreadsheet provided with the
SSDF document. The supplemental spreadsheet contains notional implementation
examples, which can be useful to provide explanations and potential use cases. If you
have already implemented other framework controls such as ISA/IEC 62443 or NIST
SP 800–53, you will find the cross-reference available in the supplemental spread‐
sheet to be very helpful.

Microsoft SDL
Microsoft first introduced its SDL (which Microsoft refers to as a Security Develop‐
ment Lifecycle) in 2008 and has been a solid supporter of SDL practices in all the
standards and frameworks mentioned in this chapter.20 Microsoft provides a free
document titled “Simplified Implementation of the Microsoft SDL” for download on
its website along with a Simplified SDL spreadsheet.21 Prior to the release of NIST
SSDF, the Microsoft SDL documentation was my recommended guidance to nonin‐
dustrial control system companies, especially small organizations or startups.

64 | Chapter 4: Secure Development Lifecycle

Although Figure 4-3 implies a waterfall process, Microsoft SDL is adaptable to Agile
processes as well.

Figure 4-3. The Microsoft Security Development Lifecycle—simplified

Microsoft has supplemented its SDL with other topics on its Security Engineering
portal.22 The most important enhancement is the Secure DevOps practices, as men‐
tioned in Chapter 6, which can be considered as the basis for a Cloud SDL.23

ISO/IEC 27034 Application Security
The International Organization of Standardization (ISO) and the International Elec‐
trotechnical Commission (IEC) collaborated to create and release ISO/IEC 27034 as
part of the overall ISO 27k series. The ISO/IEC 27034-1:2011 standard “Information
Technology—Security Techniques—Application Security” offers guidance for organi‐
zations acquiring, developing, or managing applications.24 The ISO 27034 series also
provides guidance to implement and demonstrate application security governance as
well as application security management by helping to define, implement, and main‐
tain a level of trust related to each application’s lifecycle.

The 27034 standard works well for software applications in organizations that have
adopted the ISO 27k standards and for those that are just starting to implement secu‐
rity for their applications. It is closely aligned to the ISO 27005 information security
risk management standard. There are five main elements to the 27034 standard:

Application Security Controls (ASCs)
Verifiable controls linked to the organization’s security requirements, classified
by level of trust, to prevent weaknesses in and around applications, as shown in
Figure 4-4.

Augmenting an SDLC with SDL | 65

Organization Normative Framework (ONF)
A repository of ASCs and processes used to normalize application security best
practices across the organization.

ONF Management Process
Manages an organization’s priorities and defines ASCs in addition to other pro‐
cesses and security activities for the organization’s applications.

Application Security Management Process (ASMP)
Assesses risks, defines requirements, and tests ASCs using verification
measurements.

Application Normative Framework (ANF)
Collects and stores ASCs for a particular application as a subset to ONF, as well
as process outcomes as security evidence for that application.

Figure 4-4. ISO/IEC 27034 Application Security Control

At first glance, many organizations consider the ISO 27034 standard to be complex,
abstract, and of limited use to software manufacturers. However, while the mapping
to specific situations may seem overwhelming to most businesses, the 27034 standard
offers a step-by-step approach that allows companies to integrate application security
into their existing processes according to their level of maturity, their priorities, and
the resources they have available. This approach allows individuals, small organiza‐
tions, and agile organizations to develop the ASCs for their applications in their con‐
text, and then continue to integrate the elements proposed by the 27034 standard as
and when their security needs arise. For organizations already certified to many ISO
27k standards, the 27034 standard is worth considering.

66 | Chapter 4: Secure Development Lifecycle

SAFECode
The Software Assurance Forum for Excellence in Code (SAFECode) is a nonprofit
collaboration of companies that first documented SDL practices starting in 2008.
Now in its third edition, “Fundamental Practices for Secure Software Development”
provides a good foundation for secure development and testing.25 The document ref‐
erences separate publications, including “Practices for Secure Development of Cloud
Applications,” which was released in 2013, and guidance for Agile practitioners in
“Practical Security Stories and Security Tasks for Agile Development Environments”
in 2012.26,27

All the SAFECode documents are well written and provide details on the core aspects
of an SDL. The documents do not, however, provide prescriptive and enumerated
requirements (e.g., Secure Design requirement number n). Without a set of controls,
a development organization cannot demonstrate to a third party that SDL was fol‐
lowed for every release. I do believe the SAFECode publications can be used to aug‐
ment a set of controls and provide materials for a solid training program. Although
the cloud document is somewhat out of date and does not mention serverless com‐
puting, the Agile document contains many user stories, backlog tasks, and vulnerabil‐
ity weaknesses to support secure development and testing.

SDL Considerations for IoT, OT, and Embedded Systems
An SDL is applicable for all products and applications, but there are additional con‐
siderations for devices such as IoT, OT (operational technology that can detect or
cause a change in physical processes), and embedded systems (combination of com‐
puter hardware and software). As mentioned in “Device Protection Measures” on
page 175, there are different ways to build in protection for devices through addi‐
tional requirements, design considerations, development, and testing of the software,
firmware, and hardware.

For IoT devices, there are new standards, baselines (minimum requirements), and
labeling programs being released each year, and many are specific to the type of IoT
device. Labeling programs require manufacturers to meet a certain cybersecurity
standard before they can place a specific logo (trust mark) on the product. For exam‐
ple, the Singapore IoT Cybersecurity Labelling Scheme was released in 2021 and now
includes many categories of consumer IoT devices such as routers, smart home hubs,
and smart home devices.28 Finland and Germany have also released cybersecurity
labels, and the US IoT Cybersecurity Labeling for Consumers program is in design
but was not officially released at the time this book was published.

Augmenting an SDLC with SDL | 67

In regard to OT products and embedded systems, the standards and baselines are
very similar to IoT, but OT products generally have a correlation with safety either
directly (e.g., controlling wastewater systems or manufacturing machinery) or
indirectly (e.g., reading sensors located in a data center). There are a number of
standards for IoT/OT, including some country- and industry-specific requirements. I
have provided the following list, but you will need to monitor for new requirements
since there are more releasing all the time:

• ISA/IEC 62443-4-2: technical security requirements for components29

• ETSI EN 303 645: cybersecurity for consumer IoT30

• ISO/IEC 27400:2022: IoT security and privacy guidelines31

• ISO/SAE 21434: automotive cybersecurity standard32

• UL 2900-1: network-connectable products33

• CTIA IoT Cybersecurity Certification: IoT baseline for the purpose of
certification34

• UK Product Security and Telecommunications Infrastructure Act 2022: internet-
connectable products35

• EU Cybersecurity Resilience Act (CRA): draft regulation includes IoT scope36

• US NIST IR 8259 Series: IoT recommendations and baselines37

• US California Law SB-327: first law specifically on IoT security38

• US Oregon Law HB 2395: consumer IoT law39

Product and Application Security Metrics
A frequent question from those new to application security is “What metrics (a num‐
ber) or measurements (relationship between numbers) do I use to assess an organiza‐
tion or product?” The answer, unfortunately, is not simple because it depends on
where you are on your security journey and what is reasonable to capture.

My personal favorite for newer security programs is an SDL adoption measurement
that uses compliance metrics from specific processes, such as penetration tests and
security reviews. For example, there should be no easy vulnerabilities found in the
penetration test, which has a complexity scoring system of easy, moderate, and diffi‐
cult. You can combine any number of metrics and apply certain weights (e.g., three
times the weight for a product that had an easy vulnerability) to define a measure‐
ment system that is unique to your organization.

68 | Chapter 4: Secure Development Lifecycle

For a list of many application security metrics and measurements, I recommend the
“Capability Maturity Model and Security Metrics” chapter in The Purple Book of Soft‐
ware Security.40 The Purple Book Community of software security experts, of which I
am a founding member, has also designed the Scalable Software Security Maturity
Model (S3M2) for organizations to assess their security maturity.41 This software
security model can be used by organizations of any size, even startups, and it is appli‐
cable to every industry and technology.

There are three other models available: ISACA/Carnegie Mellon University CMMI,
Synopsys BSIMM, and OWASP SAMM. The Capability Maturity Model Integration
(CMMI) uses well-known maturity levels to assess the capability of the process being
measured. Available for purchase, CMMI is a good choice for organizations that have
already adopted other capability maturity models and may not need a dedicated focus
on software security.42

The Synopsys BSIMM (Building Security in Maturity Model) is available as an assess‐
ment service and thus is mainly used by larger companies. Although it is not a matur‐
ity assessment, it does provide assessment and comparison to peer companies and
industry. Leveraging the results of the assessments conducted each year, Synopsys
then produces a Trends & Insights report with key findings and recommendations.43

The OWASP SAMM (Software Assurance Maturity Model) project was specifically
designed for application security and is available free to any organization.44 It is a
comprehensive application security maturity model, but it does not include other
important areas of organization security posture such as network security and physi‐
cal security. I suggest you review both the OWASP SAMM and the Purple Book S3M2
to find a maturity model that works well for your organization.

Summary
Secure development lifecycles are the cornerstone of a secure software supply chain.
With the attention being placed on secure development and secure testing practices,
it will soon become common practice to have a corporate SDL policy for the develop‐
ment of internal, enterprise, or customer applications and products. Although there
are various frameworks and approaches to SDLs, they all center around the main
principles of security requirements, secure design, secure development, and security
testing.

By incorporating these key principles into a corporate SDLC, the security posture of
applications and products will improve and can respond when vulnerabilities are dis‐
covered. In Chapter 5, I’ll discuss the various types of source code and how to secure
the build and deployment processes.

Summary | 69

References
1 Tanya Janca, Alice and Bob Learn Application Security (Wiley, 2020).

2 “Security Requirements for Cryptographic Modules”, NIST, March 19, 2019.

3 “CREST OVS Web Application Programme”, CREST, accessed December 10,
2023.

4 MITRE ATT&CK®, accessed December 10, 2023.

5 Lockheed Martin Corporation, Gaining the Advantage: Applying Cyber Kill Chain
Methodology to Network Defense, 2015.

6 “A New Open Framework for Releasing Secure Products”, PBOM, accessed
December 10, 2023.

7 “Threat Modeling Manifesto”, accessed October 26, 2023.

8 “OWASP Top 10”, OWASP, accessed November 11, 2023.

9 Sherif Koussa, “What Do SAST, DAST, IAST and RASP Mean to Developers?”
Software Secured, accessed December 10, 2023.

10 “ISO/IEC 30111:2019 Vulnerability Handling Processes”, ISO, accessed Decem‐
ber 10, 2023.

11 Charlie Osborne, “Updated Kaseya Ransomware Attack FAQ: What We Know
Now”, ZDNET, July 23, 2021.

12 “Common Vulnerability Scoring System SIG”, Forum of Incident Response and
Security Teams, accessed December 10, 2023.

13 “Stakeholder-Specific Vulnerability Categorization (SSVC)”, US Cybersecurity &
Infrastructure Security Agency, accessed December 10, 2023.

14 “Exploit Prediction Scoring System (EPSS)”, Forum of Incident Response and
Security Teams, accessed December 10, 2023.

15 “Known Exploited Vulnerabilities Catalog”, US Cybersecurity & Infrastructure
Security Agency, accessed December 10, 2023.

16 See “ANSI/ISA-62443-4-1-2018, Security for Industrial Automation and Control
Systems—Part 4-1: Secure Product Development Lifecycle Requirements (Formerly
Part 4-1: Product Security Development Life-Cycle)”, International Society of Auto‐
mation, accessed December 10, 2023; and “IEC 62443-4-1:2018”, International Elec‐
trotechnical Commission, January 15, 2018, IEC.

17 International Society of Automation-Global Cybersecurity Alliance, Quick Start
Guide: An Overview of ISA/IEC 62443 Standards, June 2020.

70 | Chapter 4: Secure Development Lifecycle

https://csrc.nist.gov/publications/detail/fips/140/3/final
https://www.crest-approved.org/membership/crest-ovs-programme
https://attack.mitre.org
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://pbom.dev
https://www.threatmodelingmanifesto.org
https://owasp.org/www-project-top-ten
https://www.softwaresecured.com/what-do-sast-dast-iast-and-rasp-mean-to-developers
https://www.iso.org/standard/69725.html
https://www.zdnet.com/article/updated-kaseya-ransomware-attack-faq-what-we-know-now
https://www.zdnet.com/article/updated-kaseya-ransomware-attack-faq-what-we-know-now
https://www.first.org/cvss
https://www.cisa.gov/stakeholder-specific-vulnerability-categorization-ssvc
https://www.first.org/epss
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://webstore.iec.ch/publication/33615
https://gca.isa.org/hubfs/ISAGCA%20Quick%20Start%20Guide%20FINAL.pdf
https://gca.isa.org/hubfs/ISAGCA%20Quick%20Start%20Guide%20FINAL.pdf

18 Medical Device Coordination Group, MDCG 2019-16—Guidance on Cybersecur‐
ity for Medical Devices, July 2020.

19 Murugiah Souppaya, Karen Scarfone, and Donna Dodson, “Secure Software
Development Framework (SSDF) Version 1.1: Recommendations for Mitigating the
Risk of Software Vulnerabilities”, NIST, February 2022.

20 “Microsoft Security Development Lifecycle (SDL)”, Microsoft, accessed Decem‐
ber 29, 2022.

21 Microsoft Download Center, accessed December 29, 2022.

22 “Security Engineering Portal”, Microsoft, accessed December 29, 2022.

23 “Security DevOps”, Microsoft, accessed December 29, 2022.

24 “ISO/IEC 27034-1:2011 Information Technology—Security Techniques—Appli‐
cation Security”, ISO, accessed December 10, 2023.

25 SAFECode, Fundamental Practices for Secure Software Development, third edi‐
tion, March 2018.

26 SAFECode and Cloud Security Alliance, Practices for Secure Development of
Cloud Applications, December 5, 2013.

27 SAFECode, Practical Security Stories and Security Tasks for Agile Development
Environments, July 17, 2012.

28 “Cybersecurity Labelling Scheme (CLS)”, Cyber Security Agency of Singapore,
accessed December 10, 2023.

29 “ANSI/ISA-62443-4-2-2018, Security for Industrial Automation and Control
Systems, Part 4-2: Technical Security Requirements for IACS Components, 2nd Print‐
ing”, International Society of Automation, accessed December 10, 2023.

30 ETSI, Cyber Security for Consumer Internet of Things: Baseline Requirements,
March 31, 2021.

31 “ISO/IEC 27400:2022—Cybersecurity—IoT Security and Privacy—Guidelines”,
ISO, accessed December 10, 2023.

32 “ISO/SAE 21434:2021 Road Vehicles—Cybersecurity Engineering”, ISO,
accessed December 10, 2023.

33 “UL 2900-1 Ed. 1-2017—Standard for Software Cybersecurity for Network-
Connectable Products, Part 1: General Requirements”, ANSI Webstore, accessed
December 10, 2023.

34 “Internet of Things (IoT) Cybersecurity Certification”, CTIA Certification,
accessed December 10, 2023.

Summary | 71

https://health.ec.europa.eu/system/files/2022-01/md_cybersecurity_en.pdf
https://health.ec.europa.eu/system/files/2022-01/md_cybersecurity_en.pdf
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/download/details.aspx?id=12379
https://www.microsoft.com/en-us/securityengineering
https://www.microsoft.com/en-us/securityengineering/devsecops
https://www.iso.org/standard/44378.html
https://www.iso.org/standard/44378.html
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/01/SAFECode_CSA_Cloud_Final1213.pdf
https://safecode.org/wp-content/uploads/2018/01/SAFECode_CSA_Cloud_Final1213.pdf
http://safecode.org/wp-content/uploads/2018/01/SAFECode_Agile_Dev_Security0712.pdf
http://safecode.org/wp-content/uploads/2018/01/SAFECode_Agile_Dev_Security0712.pdf
https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes/cybersecurity-labelling-scheme
https://www.isa.org/products/ansi-isa-62443-4-2-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-2-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-2-2018-security-for-industrial-au
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.iso.org/standard/44373.html
https://www.iso.org/standard/70918.html
https://webstore.ansi.org/standards/ul/ul2900ed2017
https://webstore.ansi.org/standards/ul/ul2900ed2017
https://ctiacertification.org/program/iot-cybersecurity-certification

35 “Product Security and Telecommunications Infrastructure Act 2022”, legisla‐
tion.gov.uk, accessed December 10, 2023.

36 “European Cyber Resilience Act (CRA)”, accessed December 10, 2023.

37 “NISTIR 8259 Series”, NIST, accessed December 10, 2023.

38 “California SB-327 Information Privacy: Connected Devices”, California Legisla‐
ture, September 28, 2018.

39 A-Engrossed House Bill 2395, Oregon Legislature, accessed December 10, 2023.

40 Purple Book Community, “Capability Maturity Model and Security Metrics”, in
The Purple Book of Software Security, accessed December 10, 2023.

41 “Scalable Software Security Maturity Model (S3M2)”, Purple Book Community,
accessed December 10, 2023.

42 “CMMI Development”, CMMI Institute, accessed December 10, 2023.

43 Synopsys, BSIMM 13: Trends & Insights Report 2022, 2022.

44 “OWA Software Assurance Maturity Model”, OWASP, accessed December 10,
2023.

72 | Chapter 4: Secure Development Lifecycle

https://www.legislation.gov.uk/ukpga/2022/46/contents/enacted
http://legislation.gov.uk
http://legislation.gov.uk
https://www.european-cyber-resilience-act.com
https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-program/nistir-8259-series
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
https://olis.oregonlegislature.gov/liz/2019R1/Downloads/MeasureDocument/HB2395/A-Engrossed
https://www.thepurplebook.club/the-purple-book-chapters/capability-maturity-model-and-security-metrics
https://www.thepurplebook.club/s3m2
https://cmmiinstitute.com/cmmi/dev
https://www.synopsys.com/content/dam/bsimm/reports/bsimm13.pdf
https://owaspsamm.org

CHAPTER 5

Source Code, Build, and
Deployment Management

The true core of software supply chain security is the integrity of the product or
application itself. From the moment one line of code is written until its delivery, there
is risk of compromise. This compromise can come in the form of altered or injected
code, malware, poor coding, weak build practices, and unverified deployments.

The development, build, and deployment processes are where the most well-known
software supply chain attacks have occurred, at SolarWinds and Codecov, which are
both described in more detail later in the chapter. Not only were their infrastructures
compromised, but the attackers compromised their applications to gain access to
many more customer organizations. The industry has reacted by focusing on
improvements in the source code, build, and deployment processes.

This chapter will discuss the details of source code, how to improve code quality
using secure coding standards and tools, the management processes, and integrity
throughout the processes. The good news is that the controls in this chapter are not
difficult to implement and will greatly increase the security posture of products or
applications. Many of these controls build upon the infrastructure security controls in
Chapter 3. The build and deployment processes in this chapter focus on more tradi‐
tional products and applications. Therefore, refer to Chapter 6 for a discussion on
cloud processes.

Source Code Types
It’s important to know the characteristics seen in different types of source code—such
as open source, commercial, and proprietary, as well as operating systems and frame‐
works—because they hold different risks within the software supply chain. Risks also

73

exist when using low-code or no-code platforms to build applications and generative
AI platforms to write source code, as explained in this section. Your organization
should always determine the data classification for source code, as discussed in Chap‐
ter 7. For example, open source code may be classified as public, but proprietary code
may be classified as confidential.

Open Source
Open source software (OSS) can be written by anyone and distributed under specific
licenses that grant others the right to use, change, and share the code. In its 2022
Open Source Security and Risk Analysis Report, Synopsys audited 2,400 code bases and
determined that 78% were open source code.1 The remaining 22% were a blend of
proprietary and commercial code. With over three times the amount of code being
open source, this highlights the importance of security practices for evaluating source
code coming into the development process.

There are many risks to using open source, and those risks must be evaluated to
determine whether or not open source should be used for a product or application.
An open source project may have thousands of lines of code constructed from hun‐
dreds of authors. Many of the open source libraries are stored as code projects on
public repositories such as GitHub, but you must remain cautious because not all
code in GitHub, Stack Overflow, and other locations is safe to use.2,3 The code may
contain back doors, links to command-and-control servers, logic bombs, and inten‐
tional flaws. When searching for source code, only use legitimate, well-known public
repositories and package managers. However, there is malicious code even in
reputable repositories.

Instead of developing new code, using open source code can provide innovation and
also reduce the time needed for development and testing. The advantage of using the
more popular open source is that the code quality in those libraries is usually higher
due to supervision, many code reviews, and extensive testing. The Apache Log4Shell
project (where the Log4j critical vulnerability existed) is one of those libraries, but
this vulnerability demonstrates that even well-tested code can eventually have
vulnerabilities.

There are several techniques to reduce risks, including the use of software composi‐
tion and code analysis tools. However, the tools can miss some security vulnerabili‐
ties. The most secure method for reducing risk is conducting line-by-line manual
code reviews to inspect the code. Unfortunately, this is rarely done since open source
can be thousands of lines long, and manual line-by-line reviews take time by even
experienced reviewers.

There are many controls that an organization can implement to reduce OSS usage
risk, and the best collection of controls and guidance can be found in the Secure
Supply Chain Consumption Framework (S2C2F) Simplified Requirements document.4

74 | Chapter 5: Source Code, Build, and Deployment Management

Originally created as an internal Microsoft initiative, this framework is now freely
available to any organization to build a strong open source software program, prevent
the consumption of malicious code, and improve vulnerability remediation times, as
shown in Figure 5-1.

Figure 5-1. Secure Supply Chain Consumption Framework concepts and goals

To better understand the overall risk of OSS, you can use the free tool called OpenSSF
Scorecard to check for vulnerabilities, dependencies, maintenance, tests, manage‐
ment, contributors, and build risks.5 The tool generates a score and provides reme‐
diations to help strengthen the security posture. Another resource from OpenSSF is
the “Concise Guide for Evaluating Open Source Software,” which contains a compre‐
hensive list of questions to consider when evaluating OSS.6

Additional approaches for reducing risk include examining who has contributed to
the open source project and the frequency at which there are updates to the code.
When open source has only one code maintainer—also known as single
committers—there is a high probability that the person is doing this voluntarily. The
maintainer may not have the capacity or capability to fix vulnerabilities, and some‐
times the person will stop providing updates to the code. If the open source is aban‐
doned, it essentially reaches “end of life” (EOL). This means your organization must
take responsibility for fixing any publicly known vulnerabilities in the open source
code within your software, or it should remove that open source from your software
to reduce risk.

Open source has software licenses (e.g., BSD, GNU) associated with it, and these
licenses provide details regarding how the open source may be used, modified, or
shared.7 One of the supply chain risks of open source is when a software license has
additional conditions on the standard license text, such as restricting usage in certain
government environments. Carefully review all the licenses for any potential license
violations prior to using the OSS in your products and applications.

Source Code Types | 75

Source Code, Build, and Deployment Controls 01–02
Control SCBD-01: Use only open source that is well supported and available from
legitimate sources. Continuously review all open source code, including updates or
patches, for malicious threats and vulnerabilities. Continuously review the source
code maintainers and contributors for ownership risk.

Control SCBD-02: Review all open source and commercial licenses for agreement or
potential license issues.

Commercial
Commercial source code can be libraries, frameworks, binaries, or executables pur‐
chased for use within or by a product or application. Purchasing commercial code is
similar to marriage—you want to understand your partner in hopes of having a long
relationship because separating assets and obligations in a divorce can be very diffi‐
cult. You can lower commercial code risk by performing proper code inspection,
security tests, supplier management, and due diligence of the software publisher
before and during the contract lifecycle.

Vulnerabilities exist in commercial source code, so in the contract it is important to
document the service level agreements (SLAs) for vulnerability management and
notifications. If you are only purchasing executables, and not the source code itself,
you should minimize risk by requiring code to be placed with an escrow agent that
can release the source code should the company close or default on its obligations.
For more details on assessing suppliers and establishing contracts, see Chapter 9.

Proprietary
Proprietary code is written by your organization or a third party contracted by your
organization. Intellectual property rules and employer agreements do not normally
grant or release code to the original employee or contractor. Usually proprietary code
is owned by the organization unless a special agreement exists with employees or
third parties.

Operating Systems and Frameworks
Hardware platforms or chips may contain embedded operating systems (OSs), real-
time operating systems (RTOSs), frameworks, libraries, or code. This code can be
either open source (e.g., Apache Log4Shell), commercial (e.g., Microsoft .NET frame‐
work), or proprietary. To reduce risk, keep code patched or updated to resolve any
design flaws or vulnerabilities. Some patches and security fixes can be “backported”
to earlier versions without upgrading all the software libraries.8 For example, patches

76 | Chapter 5: Source Code, Build, and Deployment Management

backported from version 7.3 of a product can be incorporated into versions 7.0, 7.1,
and 7.2, and those versions retain their original, earlier version number.

When incorporating operating systems into embedded software or firmware, during
the build process you can use package managers to automatically manage dependen‐
cies and enable rapid updates, followed by thorough testing of the product. Platforms
without embedded operating systems can usually leverage auto-update capabilities
available in that version of the operating system. The Microsoft Windows and Mac
operating systems have had update functionality for a long time, originally as a down‐
load and install process but now as a nearly seamless update. This capability has
increased the security posture of the operating systems, but since only a limited num‐
ber of software products and applications have auto-update functionality, it is impor‐
tant for organizations to understand and manage the patch cadence for all
applications in every environment.

Source Code, Build, and Deployment Control 03
Control SCBD-03: Update or patch software, firmware, and code to resolve any
remediated vulnerabilities.

Low-Code/No-Code
Many organizations have moved to low-code or no-code development platforms that
provide the capability for anyone to create applications through a graphical user
interface instead of coding in a programming language. Although the development
environment and underlying application platform must be managed at an enterprise
level, the applications created by users may also have a number of security vulnerabil‐
ities due to design errors. As seen in the “OWASP Low-Code/No-Code Top 10” list,
there are still risks in the platform and applications such as account impersonation,
authorization misuse, and data leakage.9 SDL practices such as threat modeling and
security testing are still required to reduce risk.

Generative AI Source Code
Developers have been able to generate source code through IDEs (integrated develop‐
ment environments) and other tools for many years, but with the advent of modern
generative AI systems, there are new security risks to consider when utilizing these
tools. Coding assistants such as OpenAI’s ChatGPT and GitHub’s Copilot greatly
increase developer efficiency, but introduce risks such as vulnerabilities, malicious
code, poisoned training data, and quality and license risk.

Generative AI systems use training models to recognize data patterns and then use
these patterns to generate new data. The content used to train the systems can come

Source Code Types | 77

from public repositories, private repositories, or a combination of both. Since the
source code training data likely has vulnerabilities, you should expect approximately
40% of the generated source code to also include vulnerabilities, according to
research from Cornell University.10

In addition to vulnerabilities, generated AI code may also have end-of-life compo‐
nents, defects, design flaws, lack of documentation, and unnecessary code. Develop‐
ers could find it difficult to understand the code logic and modify code when
something goes wrong. Threat actors are taking advantage of the lack in transparency
to specifically poison training data with vulnerabilities, malicious code, and biases
that can lead to discriminatory practices in generated code. You can mitigate these
risks by carefully reviewing the generated code to ensure it meets your standards of
quality and testing the code carefully for threats and vulnerabilities.

If your organization allows or is considering the use of generated code, be cautious of
ethics and policy concerns, as well as the licensing and use of the training data or
generated code. Ethics, government policies, and organizational policies can all play a
part in your decision to include generated code for internal applications or commer‐
cialized products. One ethical concern is the ambiguity over the authorship and
copyright of AI-generated content. Your legal team should carefully review the license
and, if applicable, the contract agreement before using the generative AI platform. To
prevent the loss of intellectual property such as code or data, the legal team should
also confirm if the training data and generated code is used in training models
outside your organization.

Source Code, Build, and Deployment Control 04
Control SCBD-04: Review all generative AI licenses for property rights concerns.
Review all generated code for risks, threats, vulnerabilities, and lack of quality.

Code Quality
As discussed in Chapter 4, secure development is one of the key principles in soft‐
ware supply chain security. An important aspect of secure development is ensuring
code quality, which includes secure coding, the use of analysis tools, and code
reviews.

Secure Coding Standards
Secure coding standards are guidelines and rules for preventing security vulnerabili‐
ties. When used, these standards can help prevent attacks, detect problems or intrud‐
ers, and stop malicious events or errors that could compromise software security.
Standards for your organization will vary depending on the platforms and coding

78 | Chapter 5: Source Code, Build, and Deployment Management

languages. Table 5-1 includes examples of secure coding standards that you can use to
build a set of standards for your organization.

Table 5-1. Secure coding standards

Title Description

SEI CERT Coding Standardsa Language-specific coding rules for C, C++, Java, Perl, and the Android™
platform.

Common Weakness Enumeration (CWE)b Security weaknesses in software and hardware. Includes languages C, C+
+, and Java.

OWASP Top 10c Top web application security risks. Additional top 10 lists are available for
desktop apps, mobile, APIs, serverless computing, low-code/no-code,
large language model applications, Kubernetes, CI/CD build
management, privacy, IoT, and more.

“OWASP Secure Coding Practices Checklist”d Detailed checklist of best practices for secure coding.

Payment Card Industry Data Security Standard
(PCI DSS)e

Secure coding guidelines for PCI DSS Requirement 6.

Secure Programming Cookbook for C and C++f Recipes for cryptography, authentication, input validation, and more.

a “SEI CERT Coding Standards”, Carnegie Mellon University—Software Engineering Institute, November 18, 2020.
b Common Weakness Enumeration, accessed November 12, 2023.
c “OWASP Top 10”, OWASP, accessed November 12, 2023.
d “Secure Coding Practices Checklist”, OWASP, accessed December 10, 2023.
e Beth Osborne, “Secure Coding for PCI Compliance”, Infosec, March 4, 2019.
f John Viega and Matt Messier, Secure Programming Cookbook for C and C++ (O’Reilly, 2003).

Source Code, Build, and Deployment Control 05
Control SCBD-05: Maintain a set of secure coding standards specific to platforms and
code languages. Educate developers on secure coding practices.

Software Analysis Technologies
Examining source code for risks at the time of development can give developers
direct feedback as they build products and applications. One technology used to
improve secure coding is the set of plugins or features within integrated development
environments (IDEs) where developers write code. Enhanced IDEs can provide
immediate feedback to the developer before the code is even analyzed or tested. The
IEEE Society has a list of free and commercial plugins categorized by IDE platform,
code language, and source availability.11 Be cautious, however, when using IDEs and
plugins, because they can be compromised with malware, as happened in the
“Octopus Scanner” attack on the Netbeans Java IDE.12

Code Quality | 79

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://cwe.mitre.org
https://owasp.org/www-project-top-ten
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/02-checklist/05-checklist
https://resources.infosecinstitute.com/topic/secure-coding-for-pci-compliance
https://www.oreilly.com/library/view/secure-programming-cookbook/0596003943

Software analysis tools, of which there are two main types, examine source code for
security purposes. Static Application Security Testing (SAST) tools examine propriet‐
ary software for vulnerable code patterns, and Software Composition Analysis (SCA)
tools examine open source components for known vulnerabilities.

SAST tools apply secure coding rules and need to support the programming lan‐
guages used in your organization’s products and applications. These testing tools lev‐
erage requirements, design, and specifications to test source code for known security
vulnerabilities, but there can be many false positives (the tool claims there is an issue
when there is not). SCA tools review code for known vulnerabilities, but there can be
false negatives (missed issues) if the open source software library is not recognized by
the tool. Both types of tools are extremely valuable in developing secure products and
applications.

An additional analysis tool, known as a secrets scanning tool, is used to detect and
identify sensitive information such as API keys, access tokens, credentials, and other
confidential data within code repositories and other data sources. This valuable tech‐
nology can help prevent breaches due to the loss of intellectual property, as described
in Chapter 7.

Source Code, Build, and Deployment Control 06
Control SCBD-06: Use features and plugins for enhancing integrated development
environments (IDEs) and Static Application Security Testing (SAST) tools to identify
secure coding rules and vulnerable coding patterns. Use Software Composition
Analysis (SCA) tools to identify vulnerabilities in open source.

Code Reviews
Reviewing open source, commercial, proprietary, operating system, framework, and
generated source code is an important step in evaluating code for security risk and
quality.13 A manual line-by-line code review by experienced reviewers, as mentioned
earlier in “Open Source” on page 74, can reduce risk. Reviews do not have to be for‐
mal but instead can be a lightweight process before the code is allowed into the build
or deployment. Code reviews may only have one reviewer, though two or more peers
are recommended especially when adding open source code. Reviewers can use this
approach to mentor new developers or cross-train on another developer’s code,
which can quicken issue resolution when a flaw is discovered. Peer reviews can also
help to mitigate insider threats, meaning that it would take collusion to insert
malicious code.

80 | Chapter 5: Source Code, Build, and Deployment Management

Source Code Integrity
In response to the SolarWinds attack, where malicious actors compromised code and
build integrity, Google released its “Supply-Chain Levels for Software Artifacts”
(SLSA) framework to make it more difficult or potentially prevent attacks on other
software developers.14 The SLSA framework ensures the integrity of artifacts interact‐
ing with source code management (SCM), continuous integration/continuous
deployment (CI/CD), and distribution, while also providing details about the
potential threat entry points, as shown in Figure 5-2.15

Figure 5-2. Potential threats in the development lifecycle

Although SLSA version 1.0 does not have the Source track at the time this book was
published, SLSA version 0.1 is still available and has some source integrity require‐
ments. The SLSA 1.0 Build track has requirements for provenance of the code pack‐
age, signed provenance, and a hardened build platform.

In addition to the SLSA framework, the NIST SP 800-218 SSDF (Secure Software
Development Framework) also contains source and build management requirements
that can strengthen software supply chain security. Specifically the SSDF control PO.
3.2 provides examples for securing tools, repositories, and build pipelines. References
to SSDF are included throughout the document called “Securing the Software Supply
Chain: Recommended Practices Guide for Developers,” published by the Enduring
Security Framework (ESF).16 Although the guide contains many of the risks, controls,
and mitigations I mention in this book, the June 2022 ESF guide has some editorial
challenges, making it difficult to implement due to repetitive topics that were likely
the result of multiple authors contributing content.

There is another document, the “CIS Software Supply Chain Security Guide,” that has
a very comprehensive set of controls for source code, build pipelines, dependencies,

Source Code Integrity | 81

artifacts, and deployment.17 Each control has a description, rationale, audit recom‐
mendation, and remediation suggestion. The guide is ideal if you are looking for a
more detailed set of controls that you can implement and then use to check
compliance.

Change Management
The process of change management within software development consists of securing
access, tracking changes, reviewing changes, and controlling changes. You can per‐
form change management using the various tools and systems already available in the
development process. However, in many environments, the features or policies are
not implemented or strong enough to stop malicious actors and threats. To identify
the gaps within the change management process, you can perform threat modeling
and penetration testing of the source and build environments.

The controls provided in Chapter 3 will strengthen the systems and environments,
but the processes for code management also need careful review. For example, your
organization should have policies that require code to be peer reviewed and scanned
prior to inclusion in the build pipeline. You should also have the appropriate controls
and policies in place that enable the propagation of code through the environments
using least-privilege principles. As required by Control IS-02, every event should be
logged to create audit documentation, such as the identification of individuals who
have updated systems and environments.

Source Code, Build, and Deployment Control 07
Control SCBD-07: Establish and maintain strict change management policies for
code, systems, applications, and environments.

Trusted Source Code
Trust is a complicated topic in the world of software development and geopolitics.
Countries and customers want trustworthy suppliers providing products and applica‐
tions. More narrowly, trusting the source code is one part of building customer trust,
but gaining that trust can be quite difficult when all the information is not known.
Historically, developers—which can be humans, systems, bots, or artificial intelli‐
gence—have not documented the origin for each line of source code. With thousands
to millions of lines of code in an application, the true origin is unknown unless the
information was captured as each line was written. Generally one has to accept that
the source code’s “country of origin,” as required by some governments and custom‐
ers, could be considered “any” or “all” countries. However, for definition within this

82 | Chapter 5: Source Code, Build, and Deployment Management

book, you can consider the country of origin to be the location of the build pipeline
or the primary maintainer.18

Source code origin is only one of the attributes of software provenance. Software
provenance has many definitions, as explained in “Development Tools” on page 44,
but as a baseline it is the verifiable information of where, when, and how the software
artifact was produced. Open source, commercial, and proprietary code may capture
provenance information, though this is not common yet in today’s build pipelines.
Due diligence in the form of code reviews, SCA tools, and vulnerability scans are the
best way to reduce risk when uncertain about the provenance of source code.

Receiving or providing trusted source code also means that the source code, build
process, and history have not been altered in any way.19 In the case of SolarWinds, as
shown in Figure 5-3, a malicious software library was injected into the build process
and then SolarWinds signed the software as part of its Orion platform. This was a
sophisticated software supply chain compromise that Google’s SLSA framework
could not have prevented unless implemented at the highest security level.

Figure 5-3. SolarWinds Orion hack

There are several ways to improve the trust for the source code your organization
develops or consumes. Using frameworks such as SDL (secure development lifecycle),
SLSA (Supply-Chain Levels for Software Artifacts), and S2C2F (Secure Supply Chain
Consumption Framework), along with the practices mentioned in this chapter will
strengthen trust as well as integrity. For open source code, the Open Source Security
Foundation (OpenSSF) has a Best Practices Badge Program that allows open source
projects to self-attest against the established criteria.20 The badge program, combined
with the OpenSSF Scorecard mentioned earlier in this chapter, can help to determine
the level of trust for an open source project.

Source Code Integrity | 83

Source Code, Build, and Deployment Control 08
Control SCBD-08: Document the provenance of source code. Review the country of
origin and provenance, where possible, for security risks in source code.

Trusted Dependencies
Often during development there is a need to include or link to code, libraries, pack‐
ages, or services from locations other than your organization’s secure code reposito‐
ries, tools, and systems. In cloud environments with dependencies, establish a
hermetic (no network access) environment for the container during each build step
to stop inclusions from remote resources. Dependencies on referenced items can lead
to software supply chain attacks if malicious actors have compromised any of the ref‐
erenced artifacts. Instead of linking to external artifacts, first quarantine the artifacts
until you can fully inspect them, and then you can store the artifacts internally as if
they were proprietary code. When the public version of the artifacts are updated, you
should also quarantine the updates and follow best practices for assessing open
source, as mentioned earlier in this chapter.

Beware of dependency confusion, especially in the popular programming languages
of Node, Python, and Ruby, which use the tools npm, pip, and gems, respectively, as
code package repositories. In Alex Birsan’s blog post, he details how dependency con‐
fusion (a vulnerability where the code package is not from the intended location) can
load external code packages rather than internal packages.21 This vulnerability can
lead to injected malware during the build process, as was the case when a security
researcher uploaded a malicious version of the open source PyTorch machine-
learning library to the PyPI code repository.22 Because the malicious library had a
higher version number, it had replaced the legitimate version for nearly a week in
December 2022.

Malicious actors are now targeting open source developers through phishing cam‐
paigns, and uploading compromised packages to the PyPI code repository. For exam‐
ple, users downloaded 700,000 compromised packages for two popular Python
applications in 2022.23 If open source code or artifacts need updating, assume the
artifact is compromised and perform the same due diligence as the first time by car‐
rying out code reviews, tests, and scans. For more detailed information, Google has a
“Dependency management” guide, which provides best practices for many different
artifacts and platforms.24

84 | Chapter 5: Source Code, Build, and Deployment Management

Source Code, Build, and Deployment Control 09
Control SCBD-09: Internally host all code packages and library dependencies.

Build Management
When establishing the process for building software packages, there are various
actors, artifacts, and systems involved in the creation of software packages. In soft‐
ware supply chain security, the risks in build management reside mainly in authenti‐
cation, the authorization of the build itself, the build scripts, and any automation.
Refer to “Code Repositories and Build Platforms” in Chapter 3 for information and
controls to secure the infrastructure before performing build management.

Authentication and Authorization
Authentication, which verifies the identity of the user or service, and authorization,
which determines the authenticated entity’s access rights, are extremely important to
secure build management processes, pipelines, and automation. If authentication and
authorization are not controlled or monitored, malicious actors and threats can cause
severe harm by manipulating the process or including malicious code. Essentially,
you need to make sure that the correct people, tools, and services are allowed to do
what they need to do for your software build, stop them from doing what they are not
supposed to do, and ensure that the entity doing or accessing something is indeed the
entity it claims to be.

Over time, the build process may have expanded to various people, tools, and serv‐
ices, and thus the authorization may not be correct. A thorough review of authorized
access should be performed with some frequency. Not only should the accounts and
keys be examined, but the permissions associated with those accounts should be set
to least-privilege access with multifactor authentication enabled. Best practices sug‐
gest severely limiting the capability to check in artifacts, access the build process, and
execute the build or deployment. For more information on how to reduce access and
authorization risk, refer to Chapter 3 and follow control IS-03.

Build Scripts and Automation
Whether it is through build scripts or some type of automation, there is risk that the
build process itself may become compromised. Malicious actors can inject code into
the scripts, configuration files, and any critical piece if not secured, monitored, and
detected. This was the case for both the CCleaner and ASUS supply chain attacks,
when malicious actors infiltrated the build systems to inject malware before the final

Build Management | 85

applications were compiled.25 Follow Control IS-04 in Chapter 4 to monitor accounts
for unusual behaviors and code injections.

Repeatability and Reproducibility
A build or CI/CD process cannot prove its integrity if it is not repeatable, reproduci‐
ble, and has an attestation from the software publisher. Having a repeatable and
reproducible process, usually through automation, allows for the validation of both
the process and the activities. There are several ways to secure build integrity, but the
strongest technique is to introduce “ephemeral” (short-living) build environments
that exist only for the moments during the build activity. The containers or environ‐
ments are then discarded after use to prevent malicious actors from accessing a static
environment and manipulating the build process, as shown earlier in Figure 5-2.

The main way to check if the reproduced build is the same as the previous build is by
comparing checksums, which are also known as cryptographic hashes or fingerprints.
A checksum is an alphanumeric representation of the contents of a file created by
applying a checksum algorithm to the file. There are three common hash algorithms
used for files, in order from simple to complex: MD5, SHA1, and SHA256. MD5 and
SHA1 have been broken by cryptography experts, but when verifying file integrity,
you still may find some websites with documentation showing those hashes. During
the build steps, the build process can generate the hashes of files and store them in a
separate, highly secure repository. The build and deployment processes can conduct
and compare integrity checks against the hashes in each step of the process using var‐
ious tools, as noted on the Reproducible Builds website.26

Source Code, Build, Deployment Control 10
Control SCBD-10: Use ephemeral (short-living) environments for build and CI/CD
processes. Perform repeatable and reproducible integrity checks on the build and
deployments.

Code Signing
Code signing, a form of public key infrastructure (PKI), is a digital signature that
verifies the file has not been altered after it was signed.27 At a minimum, all code,
drivers, product, and application files need to be signed with a certificate from a trus‐
ted Certificate Authority (CA). Every developer has the capability to sign code using
the free service “sigstore” to automate digital signing, verification, and key manage‐
ment.28 As shown in Figure 5-4, a hash is encrypted into a hash digest (the output of a
hash function) with a private key, which the CA has generated. The private key is

86 | Chapter 5: Source Code, Build, and Deployment Management

https://reproducible-builds.org

bound mathematically to a public key, which is made available to the user. The user
can verify and validate the certificate through manual or automated means.

Figure 5-4. Code-signing process

There are examples where malicious actors have stolen code-signing keys, which was
the case when Nvidia had private keys stolen during a data breach.29 A stolen private
key can be used by malicious actors to bypass operating system defenses—which pre‐
vent unsigned software from running—as experienced by unsuspecting users after
the stolen Nvidia keys were used to sign malware. If the certificate exists for a file, you
can find it on the Digital Signatures tab in the file’s Properties within Windows 11, or
on a keychain’s Certificates category in the Keychain Access app within macOS.

Source Code, Build, and Deployment Control 11
Control SCBD-11: Sign all code, drivers, scripts, and application files using a trusted
Certificate Authority private key.

Deployment Management
There are many approaches used to deploy and distribute software, as shown within
Figure 3-3. Whether the deployment is directly to a cloud environment or posted
onto a website, you should ensure that all access points in the deployment manage‐
ment process are secure. Each distribution channel should be penetration tested and
monitored for malicious actors who could tamper with the contents of the package,
thereby compromising the integrity and potentially replacing it with malicious code.

Deployment Management | 87

The deployment management process may be as simple as uploading a file to a web‐
site, as automated as deploying cloud infrastructure, or as complicated as moving
software packages through the manufacturing process. Regardless of the process,
each step should have secure access control in place. At any step, a malicious actor
can attempt to compromise the software package, but the risk is lowered if authenti‐
cation and authorization are carefully controlled. Follow Control IS-09 in Chapter 3
to secure distribution paths.

The most common method for validating the integrity is through signed certificates
and hashes created during the code-signing process. Signature validation is usually
performed automatically by an operating system (OS) or framework. Using the pub‐
lic key, the OS or framework decrypts the hash digest and compares it to the hash of
the executable, as shown in Figure 5-5.

Figure 5-5. Certificate validation

To check the hash before installation, such as during the steps in a manufacturing
process, you will need the hash digest for the software package. By decrypting the
hash digest with the public key, you can compare that one-way hash with the hash of
the executable code. This can be done either manually or through automation. If
hashes cannot be verified at each step, perform ad hoc checks at different points or
full verification when the package arrives in the final distribution location. In the case
of the Codecov hack illustrated in Figure 5-6, it was a customer who noticed the hash
of the Bash Uploader script did not match the hash listed on Codecov’s GitHub
(unfortunately the script had been compromised for two months).30

88 | Chapter 5: Source Code, Build, and Deployment Management

Figure 5-6. Codecov hack

Source Code, Build, and Deployment Control 12
Control SCBD-12: Validate software package integrity through the deployment
process by verifying certificates, signatures, and hashes.

Summary
The risk of compromise throughout the product and application lifecycle can be
reduced when we properly manage and control source code, builds, and deployment.
Proprietary, commercial, open source, low-code/no-code, and generated code, as well
as operating systems and frameworks, must be examined for code quality and integ‐
rity before the code can be trusted. With proper due diligence, such as code reviews,
testing, and scanning, we can reduce some risk in the software development process.

After securing the source code, performing a thorough review of build and deploy‐
ment processes will likely identify gaps and improvement actions. After the attacks on
SolarWinds, Codecov, and others, the developer community released many articles
and best practices, including Google’s SLSA framework. Using the controls from this
chapter and Google’s SLSA framework, the likelihood of compromise will lower and
the security posture of your product or application will elevate. In Chapter 6, I focus
on cloud software, environments, and processes rather than the traditional
software process.

Summary | 89

References
1 Synopsys, 2022 Open Source Security and Risk Analysis Report, April 12, 2022.

2 GitHub Developer Platform, accessed December 10, 2023.

3 Stack Overflow, accessed December 10, 2023.

4 Andrian Diglio and Jasmine Wong, Secure Supply Chain Consumption Framework
(S2C2F) Simplified Requirements, GitHub, accessed December 10, 2023.

5 “OpenSSF Scorecard”, accessed December 10, 2023.

6 “Concise Guide for Evaluating Open Source Software”, OpenSSF Best Practices
Working Group, November 21, 2023.

7 “OSI Approved Licenses”, Open Source Initiative, accessed December 10, 2023.

8 “Security Backporting Practice”, Red Hat Customer Portal, accessed November
11, 2023.

9 “OWASP Low-Code/No-Code Top 10”, OWASP, accessed November 11, 2023.

10 Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri, “Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s
Code Contributions”, arXiv, December 16, 2021.

11 Aniqua Z. Baset and Tamara Denning, “Poster: IDE Plugins for Secure Coding”,
IEETC, accessed December 10, 2023.

12 Amnon Even-Zohar, “Beyond SolarWinds: The ‘Octopus Scanner’ Supply Chain
Attack”, Cycode, January 12, 2021.

13 “How to Do a Code Review”, Eng-Practices, accessed November 12, 2023.

14 “Introducing SLSA, an End-to-End Framework for Supply Chain Integrity”,
Google Security Blog, June 16, 2021.

15 SLSA, accessed December 10, 2023.

16 Enduring Security Framework, Securing the Software Supply Chain: Recom‐
mended Practices Guide for Developers, August 2022.

17 “CIS Software Supply Chain Security Guide”, Center for Internet Security, June
2022.

18 David Gallacher, “Country of Origin for Computer Software—US Customs
Finally Sheds Some Light on the Issue”, Government Contracts & Investigations Blog,
February 11, 2013.

90 | Chapter 5: Source Code, Build, and Deployment Management

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://github.com
https://stackoverflow.com
https://github.com/ossf/s2c2f/blob/main/specification/Secure_Supply_Chain_Consumption_Framework_(S2C2F).pdf
https://github.com/ossf/s2c2f/blob/main/specification/Secure_Supply_Chain_Consumption_Framework_(S2C2F).pdf
https://securityscorecards.dev
https://best.openssf.org/Concise-Guide-for-Evaluating-Open-Source-Software
https://opensource.org/licenses
https://access.redhat.com/security/updates/backporting
https://owasp.org/www-project-top-10-low-code-no-code-security-risks
http://arxiv.org/abs/2108.09293
http://arxiv.org/abs/2108.09293
https://www.ieee-security.org/TC/SP2017/poster-abstracts/IEEE-SP17_Posters_paper_34.pdf
https://cycode.com/blog/beyond-solarwinds-the-octopus-scanner-supply-chain-attack
https://cycode.com/blog/beyond-solarwinds-the-octopus-scanner-supply-chain-attack
https://google.github.io/eng-practices/review/reviewer
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://slsa.dev
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisecurity.org/insights/white-papers/cis-software-supply-chain-security-guide
https://www.governmentcontractslawblog.com/2013/02/articles/baa-and-taa/country-of-origin-for-computer-software-u-s-customs-finally-sheds-some-light-on-the-issue
https://www.governmentcontractslawblog.com/2013/02/articles/baa-and-taa/country-of-origin-for-computer-software-u-s-customs-finally-sheds-some-light-on-the-issue

19 Marcellus Buchheit, Mark Hermeling, Frederick Hirsch, Bob Martin, and Simon
Rix, Software Trustworthiness Best Practices, Industrial Internet Consortium, March
23, 2020.

20 “OpenSSF Best Practices Badge Program”, OpenSFF, accessed November 12,
2023.

21 Alex Birsan, “Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies”, Medium, February 9, 2021.

22 Ofek Itach, “In-Depth Analysis of the PyTorch Dependency Confusion Admin‐
istered Malware”, Aqua Blog, January 4, 2023.

23 Amitai Ben Shushan Ehrlich, “PyPI Phishing Campaign | JuiceLedger Threat
Actor Pivots From Fake Apps to Supply Chain Attacks”, SentinelLABS, September 1,
2022.

24 “Dependency Management”, Google Cloud, December 4, 2023.

25 Michael Gorelik, “Inside the ASUS Supply Chain Attack”, Cybersecurity Blog,
March 28, 2019.

26 Reproducible Builds, accessed December 10, 2023.

27 PKI is a common protection measure that combines encryption and authentica‐
tion to prove trust in communications. Firmware code signing is described further in
Chapter 10.

28 Sigstore, accessed December 10, 2023.

29 Gareth Corfield, “Leaked Stolen Nvidia Key Can Sign Windows Malware”, The
Register, March 5, 2022.

30 Ax Sharma, “What You Need to Know about the Codecov Incident: A Supply
Chain Attack Gone Undetected for 2 Months”, Sonatype (blog), April 19, 2021.

Summary | 91

https://www.iiconsortium.org/pdf/Software_Trustworthiness_Best_Practices_Whitepaper_2020_03_23.pdf
https://www.bestpractices.dev/en
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://blog.aquasec.com/pytorch-dependency-confusion-administered-malware
https://blog.aquasec.com/pytorch-dependency-confusion-administered-malware
https://www.sentinelone.com/labs/pypi-phishing-campaign-juiceledger-threat-actor-pivots-from-fake-apps-to-supply-chain-attacks
https://www.sentinelone.com/labs/pypi-phishing-campaign-juiceledger-threat-actor-pivots-from-fake-apps-to-supply-chain-attacks
https://cloud.google.com/software-supply-chain-security/docs/dependencies
https://blog.morphisec.com/asus-supply-chain-attack
https://reproducible-builds.org
https://www.sigstore.dev
https://www.theregister.com/2022/03/05/nvidia_stolen_certificate
https://blog.sonatype.com/what-you-need-to-know-about-the-codecov-incident-a-supply-chain-attack-gone-undetected-for-2-months
https://blog.sonatype.com/what-you-need-to-know-about-the-codecov-incident-a-supply-chain-attack-gone-undetected-for-2-months

CHAPTER 6

Cloud and DevSecOps

Our world is more connected than ever, and we rely on cloud infrastructure for prac‐
tically everything. When you turn on your phone’s “airplane mode,” you quickly real‐
ize how very little can be done without connecting to the internet, cloud services, and
cloud infrastructure. With the world so dependent on the connectivity to our supply
chain, we are incapacitated when there is a failure, or exposed when there is a breach,
in the systems and applications we depend on every day. Because there are so many
paths for attack, every connection, piece of software, and byte of data is at risk in any
cloud infrastructure and is thus a risk within our supply chains.

Cloud security requires much more than setting up servers to prevent intrusion by
malicious actors. The responsibility for software security in a cloud environment goes
beyond infrastructure security (Chapter 3), the secure development lifecycle (Chap‐
ter 4), and deployment management (Chapter 5). Designing a cloud environment or
a cloud application requires additional knowledge in many topics such as network
security, configuration, tokenization, patch management, threat detection, and more.
The attack surface for cloud is much larger than software or firmware because you
must consider all the different layers of a cloud environment that may have many
owners and a variety of skill sets necessary to secure everything.

There are many types of cloud models, and you may have every type within your
organization. Table 6-1 describes some of the most common ones.

93

Table 6-1. Common cloud models, capabilities, and connections

Type Description
Software as a service (SaaS) Cloud-based software delivery model to access software applications over the internet
Infrastructure as a
service (IaaS)

On-demand service for compute, storage, networking, or virtualization

Platform as a service (PaaS) Provider hosts integrated hardware and software
Container Packages of software that contain all of the necessary elements to run in any environment
Virtualization Virtualize an entire machine down to the hardware layers
Serverless Method of providing backend services on an as-used basis, typically for developer environments
Infrastructure as code (IaC) Managing and provisioning of infrastructure through code instead of through manual processes
Multicloud Using services from more than one public cloud provider at the same time
IoT gateway Physical device or virtual platform that connects sensors, IoT modules, and smart devices to the

cloud
Edge device Hardware that controls data flow at the boundary between two networks or for cloud

connectivity
API gateway Manage incoming calls for multiple services and route them to the appropriate endpoints

For each of these models, the security responsibilities are distributed among consum‐
ers (your organization), providers, and what you both share (e.g., network security
and middleware security). Often the shared responsibilities are poorly understood by
cloud customers. In cases where both parties assume the other is taking care of secu‐
rity, it may mean no one is managing it. In many cases, the cloud provider is explic‐
itly responsible only for infrastructure such as servers and networks, and it falls to the
customer to manage resources including users, storage authorization, and application
functions. So it is essential to clearly identify who is taking accountability and owner‐
ship for the security and risks of every cloud environment and application. Known as
the shared responsibility model, these responsibilities may be defined in a contract,
statement of work, or license agreement. The shared responsibility model should be
documented alongside all the roles and responsibilities in the supply chain. To learn
more about the shared responsibility model and cloud security in detail, I recom‐
mend Chris Dotson’s book Practical Cloud Security: A Guide for Secure Design and
Deployment (2nd ed.).1 Dotson discusses cloud, data, and identity assessment man‐
agement, as well as vulnerability, patch, and incident management.

In the first half of this chapter, I will review the different cloud security frameworks,
controls, and assessments to provide a foundation for what is expected in cloud secu‐
rity and how cloud environments and the requirements they bring are different from
classical infrastructure. Even if your organization does not design and deploy cloud
environments or applications, the information I include in this chapter is relevant for
anyone assessing a supplier’s cloud product. I describe the cloud security standards,
frameworks, and assessments such as SOC 2, ISO/IEC 27001, and US FedRAMP, as
well as the work from the Cloud Security Alliance. However, you should not fully rely

94 | Chapter 6: Cloud and DevSecOps

on assessments and reports because new threats against cloud environments and
applications are being identified daily.

In the second half of this chapter, I describe how organizations can enhance their
secure development lifecycle, infrastructure, and deployment processes with DevSec‐
Ops. I also discuss the importance of change management, how highly secure infra‐
structure should not be modified except through source control, and the importance
of securing connections and APIs.

Cloud Control 01
Control CLD-01: Document the roles and responsibilities of all parties who manage,
administer, and operate cloud environments and applications.

Cloud Frameworks, Controls, and Assessments
Before an organization starts to build a cloud product or service, it should apply the
security controls from the ISO/IEC 27001 Information Security Management Systems
standard to the organization’s environments, systems, and processes.2 Once the
organization’s internal systems and organization comply with this standard, the
Cloud Security Alliance (CSA) is the best place to start for understanding cloud secu‐
rity controls and assessments.3

By understanding the CSA framework, with its Cloud Controls Matrix (CCM) and
the Consensus Assessment Initiative Questionnaire (CAIQ), you will see what con‐
trols must be in place to secure cloud infrastructure and applications.4 These controls
establish the security requirements necessary for designing and operating cloud envi‐
ronments and applications, thus providing much of what is needed for cloud audits,
reports, and certifications such as the ones I’ll discuss in this section.

ISO/IEC 27001 Information Security Management Systems
ISO/IEC 27001 is the leading information security standard followed by organiza‐
tions. It was originally published in 2005, revised in 2013, and republished most
recently in 2022. The standards are available for purchase from the ISO or IEC organ‐
izations, but the optional certifications to the standard are performed by accredited,
third-party certification bodies. Certification costs vary depending on what standards
are being audited and who is performing the certification.

As the foremost information security management system (ISMS), the 27001 stan‐
dard details the requirements for establishing, implementing, maintaining, and
improving cybersecurity with 114 controls divided into 14 domains:

Cloud Frameworks, Controls, and Assessments | 95

• Information security policies
• Organization of information security
• Human resources security
• Asset management
• Access control
• Cryptography
• Physical and environmental security
• Operational security
• Communications security
• Systems acquisition, development, and maintenance
• Supplier relationships
• Information security incident management
• Information security aspects of business continuity management
• Compliance

Of the 14 domains, many are particularly relevant to cloud security, such as asset
management, access control, physical and environmental security, operational secu‐
rity, and communications security. Some of the applicable cloud controls will be
discussed later in this chapter.

Cloud Control 02
Control CLD-02: Document security controls and requirements for cloud infrastruc‐
ture and applications. Perform assessments to identify gaps and action plans.

Cloud Security Alliance CCM and CAIQ
Unlike the ISO/IEC 27001 standard, which must be purchased, the Cloud Security
Alliance’s CCM (cloud controls matrix) and CAIQ (consensus assessment initiative
questionnaire) are now combined into CCM version 4. The CSA is supported finan‐
cially by cloud providers and corporations, but the CCM itself is freely available and
widely adopted. With nearly 200 controls in CCM version 4, the spreadsheet
identifies three main areas:

Typical control applicability and ownership
Defines who owns the responsibility for this control, but usually it is the cloud
service provider (CSP) or a shared responsibility between the CSP and customer.

96 | Chapter 6: Cloud and DevSecOps

Architecture relevance for cloud stack components
Displays “TRUE” if the control is applicable for the physical, network, compute,
storage, application, or data component stacks.

Organizational relevance
Shows “FALSE” if the control is not applicable to the teams in cybersecurity,
internal audit, architecture, software development, operations, legal/privacy, sup‐
ply chain management, or human resources, along with governance, risk, and
compliance.

The advantage of the CSA framework is that it provides the implementation guidance
(or requirements) and the auditing guidelines for teams to prepare the organization,
product, and services for assessments and audits. Organizations can capture all the
documentation and answers to have it available for anyone who may send a CAIQ to
an organization. Any gaps found during internal or external reviews should be
tracked in action plans to ensure the actions are completed in a timely manner.

Cloud Security Alliance STAR Program
The Security, Trust, Assurance, and Risk (STAR) Registry allows provider organiza‐
tions to publish their compliance with the CSA CCM and other certifications.5 This
shows customers the security and compliance posture, including the regulations,
standards, and frameworks the organization adheres to. The intention for this pro‐
gram is to reduce complexity and the need to fill out multiple customer
questionnaires.

There are two levels of the STAR: self-assessment (Level One) and third-party audit
(Level Two). Level One is a good foundation for organizations wanting to reduce the
number of customer assessments they must complete. Level Two builds off of the
requirements in ISO/IEC 27001 and SOC 2 by assessing an organization against addi‐
tional cloud-specific criteria provided in the CSA CCM.

Organizations can submit their completed CAIQ to the portal for anyone to down‐
load. As a provider, be aware there are no access controls on the site for downloading
assessments, so carefully consider what information you provide when answering the
CAIQ and uploading it to the CSA portal. You can download other organization
assessments to better understand how to answer your assessment, and also see how
others are addressing the requirements. As a customer, when searching the registry,
look for entries with both Level One assessments and Level Two certifications to find
higher-quality assessments that have been audited by a third party.

Cloud Frameworks, Controls, and Assessments | 97

American Institute of CPAs SOC 2
The American Institute of Certified Public Accountants (AICPA) designed a suite of
System and Organization Controls (SOC) for services and organizations.6 A SOC 2
audit report has become the de facto standard for accrediting an organization’s cloud
services. A SOC 2 audit by a certified examiner reviews security, availability, process‐
ing integrity, confidentiality, and privacy. These reports can provide detailed informa‐
tion and assurance for the systems in question. Most customers are now requiring
their cloud service providers (CSPs) to have passed SOC 2 audits before awarding
contracts to the CSPs. As a provider, consider giving both a SOC 2 report and the
CSA CCM assessment to customers in order to provide greater transparency into
your cloud services.

SOC 2 requirements may, at first glance, look similar to the ISO/IEC 27001 Informa‐
tion Security Management Systems standard, but the main difference is in scope. ISO
27001 provides a framework for how organizations should manage their data and
prove they have an information security management system in place, whereas SOC 2
focuses more narrowly on proving that the organization has implemented essential
data security controls.

There are two versions of the SOC 2 report: Type 1 assesses the security processes at a
point in time; and Type 2 assesses the effectiveness of the controls over an extended
period of time. Thus, a Type 1 report may take weeks or a few months to receive,
whereas a Type 2 report will usually take six months to one year.

US FedRAMP
The United States Federal Risk and Authorization Management Program (FedRAMP)
is a government-wide compliance program that provides a standardized approach to
security assessment, authorization, and continuous monitoring for cloud products
and services.7 A cloud service provider (CSP) may go through either a government
agency or a joint authorization board, using a third-party assessor, to obtain authori‐
zation for its cloud service offering.

FedRAMP differs from SOC 2 or CSA STAR because the FedRAMP controls are
compliance measurements against a standard set of security controls, procedures, and
policies based on the US NIST and Federal Information Security Management Act
(FISMA) standards. NIST SP 800-53 Security and Privacy Controls for Information
Systems and Organizations serves as the baseline for the security controls required by
FedRAMP, and FedRAMP varies depending on the Impact Levels (Low, Moderate, or
High) as defined in the CSP Authorization Playbook.8

As of late 2023, there are 125, 325, and 421 controls in the playbook for Low, Moder‐
ate, and High, respectively. Once an organization believes it has met the controls, the
authorization process can take anywhere from six months to a year or more.

98 | Chapter 6: Cloud and DevSecOps

Cloud Security Considerations and Requirements
The security requirements necessary to design, develop, configure, or deploy cloud
infrastructure and applications can be interpreted from the cloud security frame‐
works discussed in the previous section. Over time, cloud environments have expan‐
ded beyond the standard architecture of web, application, and database servers
hosted on premises in an organization’s data center, room, or closet. Security controls
can vary widely depending on the infrastructure or technology. As such, Table 6-2
lists a few security considerations for the most common cloud environment types. Be
aware that considerations listed in one category type can also apply to other types, so
consider all of them when assessing or designing cloud environments.

Table 6-2. Security considerations for different cloud models, capabilities, and connections

Type Security considerations
Software as a service
(SaaS)

• Authenticate and authorize users.
• Encrypt sensitive data.
• Monitor data sharing.
• Keep a usage inventory.

Infrastructure as a service
(IaaS)

• Use a cloud access security broker (CASB).
• Protect the cloud workload.
• Configure infrastructure securely.

Platform as a service
(PaaS)

• Patch systems and software.
• Scan applications for vulnerabilities.

Container • Secure the images.
• Manage secrets elsewhere.
• Restrict container privileges at runtime.

Virtualization • Use firewall technologies.
• Log and monitor all activity.
• Limit applications to only those necessary for the purpose.

Serverless • Build security around functions (not just applications).
• Secure and verify data in transit.

Infrastructure as code (IaC) • Check for immutability of infrastructure (changes must be provisioned through a security
pipeline).

• Scan for misconfigurations.

Multicloud • Secure API layers.
• Maintain consistent identity access management.

IoT gateway • Encrypt communications.
• Manage IoT certificates.
• Control security for baseband (e.g., radio) and ultrahigh frequencies (e.g., WiFi and

Bluetooth).

Cloud Frameworks, Controls, and Assessments | 99

Type Security considerations
Edge device • Implement firewalls.

• Use intrusion detection/prevention systems.
• Prepare for malicious attacks.

API gateway • Distributed denial-of-service (DDoS) preventions.
• Centralized authentication server.
• Limit API requests.

Beyond applying security considerations, you should also think about implementing
additional security features and requirements, as shown in Table 6-3. This isn’t an
exhaustive list, but it should serve to give you an idea of what requirements are
available.

Table 6-3. Some key cloud security requirements

Cloud security requirements Description
Automated access prevention The most popular, reCAPTCHA by Google, enables web hosts to distinguish between humans

and automated access scripts for the purpose of blocking bots.
Boundary enforcements Logical, compute, network, or storage separation to reduce the attack surface and restrict

lateral movement.a

Cloud firewalls Provides real-time monitoring, evaluates information traveling between source domains and
data ports, and permits or blocks data, thereby thwarting potential threats.

Cloud workload protection When monitoring workload behavior, it can detect an intrusion, send out an alert, and
remove a threat from cloud workloads and containers where allowed.

Tokenization Replaces sensitive data with nonsensitive data (known as a token) to ensure privacy
compliance and reduce risk of data loss.b

Encryption Transform plain-text data into indecipherable data (known as ciphertext) and return it to the
original text using a digital key.

Data state encryption Encryption techniques defined for data in transit, data at rest, and data in use.
Data localization All data generated or collected within the country or jurisdiction remains on storage devices

located within those borders.
Data sovereignty Refers to the physical storage location of the data and the laws and regulations to which the

data is subject at that location.
a “Cloud Security Guidance”, UK National Cyber Security Centre, accessed December 11, 2023.
b “Guidance on Using Tokenization for Cloud-Based Services (ITSP.50.108)”, Canadian Centre for Cyber Security, October 6,
2021.

Implementing these cloud security requirements does not guarantee the entire cloud
environment or application is secure against malicious actors or attacks. In addition
to the controls in the cloud security frameworks seen in Tables 6-2 and 6-3, an orga‐
nization should also regularly perform extensive threat modeling using MITRE’s
ATT&CK® framework (as mentioned in Chapter 4), penetration testing, and patch
management to mitigate known vulnerabilities.

100 | Chapter 6: Cloud and DevSecOps

https://www.ncsc.gov.uk/collection/cloud/understanding-cloud-services/technically-enforced-separation-in-the-cloud
https://www.cyber.gc.ca/en/guidance/guidance-using-tokenization-cloud-based-services-itsp50108

DevSecOps
Now that you understand the complexities of securing cloud infrastructure and appli‐
cations, it’s time to focus on what organizations must enhance in the infrastructure,
secure development lifecycle, and deployment processes discussed in previous chap‐
ters. This can be done with DevSecOps (development, security, and operations) or
DevOps, with the integration of security at every phase of the software development
lifecycle. DevOps is simply a methodology that integrates and automates develop‐
ment with IT operations in order to shorten the lifecycle.

DevSecOps, as shown in Figure 6-1, makes application and infrastructure security a
shared responsibility of development, security, and IT operations teams. It is an effec‐
tive approach, usually with automation, for speeding up development cycles, integrat‐
ing security tasks throughout the lifecycle, and improving reliability in cloud
environments and applications. Integrating security into a DevSecOps pipeline can
provide a unified culture between the developer, operations, and security teams with
improved feedback loops and faster cycles for addressing security issues. This can
lead to better collaboration, security, and repeatable, automated, and easy-to-audit
configurations.

Figure 6-1. DevOps and DevSecOps

In Chapter 5, I discussed various approaches for bringing security into the develop‐
ment and CI/CD processes, and for additional guidance, I recommend reading NIST
SP 800-204D, Strategies for Integration of Software Supply Chain Security in DevSecOps
CI/CD Pipelines.9 In the next section, however, I will focus on how operational secu‐
rity requirements and processes should be considered and included when operating
cloud environments.

Change Management for Cloud
When following strict change processes, every modification or suggestion to a config‐
uration or file must be documented, reviewed, and approved. This creates the docu‐
mentation needed for audits, stops unapproved changes to any component, and

DevSecOps | 101

provides an audit log for monitoring and security purposes. Change management
enables all forms of asset management tracking and provides a source of truth
without the information getting out of date.

A core rule for anything in development, but especially when working with cloud
infrastructure, is to treat every artifact, container, file, script, certificate, etc., as code.
This means that almost everything (except for secrets and private keys) must be
stored and managed in a project repository and all changes are managed using the
same review and approval process as code. In cloud environments, change manage‐
ment is handled by dedicated repositories for source control, such as AWS Code
Commit or Azure Repos. These services provide specific permissions for the DevSec‐
Ops pipeline.

Regularly review the permissions (see Control IS-04 in Chapter 3) and never have
secrets such as passwords, private keys, API keys, or other sensitive information in
the repositories (see Control IPD-05 in Chapter 7). For cloud environments, you can
protect secrets using tools such as HashiCorp Vault, Azure Key Vault, or AWS Secrets
Manager.

For the purpose of security, the following items should also be strictly tracked in a
change management system for cloud environments and applications:

User permissions
Document and store the authorizations given to access specific resources such as
infrastructure, secrets, private keys, data, code, administrative functions, etc.

Digital certificates
Keep a copy of all digital certificates (such as X.509 for public key infrastructure).
You shouldn’t have to go to the web server to get the most recent version.

Firewall, network, and cloud configurations
Store configurations to maintain a history of all changes and only use stored con‐
figurations when deploying configurations or new instances.

Containers
Maintain scanned and patched authoritative versions of containers (which are
abstract units of software that have everything needed to run a workload or
process).

Scripts and files
Keep all artifacts (e.g., Dockerfiles, PowerShell scripts) used in CI/CD pipelines,
builds, deployments, operations, and hardening containers.10,11

Patching of the software, firmware, and systems occurs in every environment. How‐
ever, updating cloud infrastructure should use patch baselines to have consistent
change control over which patches are approved or rejected. A patch baseline could
be a classification of patches, a set of rules, or a set of individual patches that can be

102 | Chapter 6: Cloud and DevSecOps

installed or rejected. Predefined baselines are available through the cloud infrastruc‐
ture’s management platform, where you can use or modify existing baselines, as well
as create new ones specific to your organization. Then the selected updates, such as
critical patches, are automatically installed through a scheduler.

Cloud Control 03
Control CLD-03: Control cloud infrastructure and artifacts in source repositories.
Implement change management that only allows changes to be made within
repositories.

Secure Design and Development for Cloud Applications
Designing and developing secure cloud applications requires developers to fully
understand cloud architecture and the attack surface of all layers within the cloud
infrastructure and applications. For this reason, the best sources for understanding
potential weaknesses are in the OWASP Top 10 lists and the MITRE ATT&CK®
Framework, as mentioned in Chapter 4.

The following list of cloud computing vulnerabilities should be addressed in the
design and development phase of both the application and the infrastructure:

• Abuse and nefarious use of cloud services
• Data exposure
• Denial of service
• Insufficient identity, credential, and access management
• Lack of encryption
• Shared technology issues (e.g., multitenant)
• Vulnerable interfaces and APIs

Despite the availability of tools and best practices, poor authentication and authoriza‐
tion are still issues today, as evidenced by the prevalence of phishing, botnet account
attacks, and the hijacking of network traffic. You must design and develop cloud
applications with strong capabilities to defend against these attacks.

Cloud applications should also be designed to include alerts and secure logging for
the most important security events, such as multiple login attacks. In addition, you
should design for centralized authentication integrations, client-side authentication
checks must be duplicated on the server side, and tokens must be issued to users for
authentication purposes.

DevSecOps | 103

API Security
Securing APIs in cloud environments and applications requires API design, develop‐
ment, testing, and operational monitoring to be part of DevSecOps. Newer applica‐
tions may be built with an API-first strategy, meaning that the APIs are the first items
created before a user interface is put in place. It is critical to review and monitor all
API access and integrations because at any time a malicious actor can be leveraging
APIs to extract data or infiltrate systems.

In order to improve the security posture of APIs, the OWASP community maintains
a set of API security risks as part of the OWASP API Security Top 10 project. Many
items in the API Security Top 10 list involve broken authorization and authentication.
For anyone developing and testing APIs, the list provides extremely valuable insights
to lower the number of vulnerabilities within environments and software
applications.

An API gateway—that is, a management tool that sits between an external client and
a collection of backend services—can manage incoming calls for multiple services
and route them to the appropriate endpoints. It consolidates security, authentication,
access controls, and policy enforcements as well as decouples the API interfaces from
backend services. API gateways can also integrate web application firewalls (WAF) to
help prevent attacks and perform API validations to reduce the risk of injections and
overflows.

There are several ways to set up an API Gateway, such as using the Azure API Man‐
agement Services, the AWS API Gateway, or self-hosting software designed for API
gateways. The benefits include denial-of-service (DoS) protections, centralized
authentication, and no back door access, and it supports any authentication protocol
(e.g., OAuth, AWS IAM, Active Directory). For security, it manages metering and
rate-limiting (i.e., control the number of requests to APIs), concurrency limits (i.e.,
simultaneous connections), and policies (e.g., caching and batching multiple
requests).

Large volumes of data can be retrieved using APIs, as experienced by T-Mobile cus‐
tomers when 37 million accounts were stolen in November 2022, according to a
Bleeping Computer article.12 It was not disclosed in the article how the T-Mobile
infrastructure was compromised, but it might have occurred through an authentica‐
tion weakness or a rogue API (which is an API not authorized by the organization).
All API infrastructure, including gateways, must be thoroughly and frequently pene‐
tration tested for vulnerabilities, authentication weaknesses, and rogue APIs.

104 | Chapter 6: Cloud and DevSecOps

Cloud Control 04
Control CLD-04: Secure and test all environments, applications, and connections,
including APIs, with appropriate technologies and access control. Log and monitor
all environments, applications, and connections.

Testing
Unlike waterfall or other linear development methodologies that require you to com‐
plete phases before moving on to the next phase, DevSecOps is meant for rapid and
continuous deployments. Some organizations may push many builds for deployment
every hour, day, or week. With these fast deployment cycles, you don’t want testing
and security to delay deployment or overwhelm your team with a never-ending set of
builds to test. Instead, the goal is to trust your tests and scans enough that you can
release without human intervention.

For cloud environments and applications, testing is more than verifying and validat‐
ing application functionality. Testing should include: operating systems, applications
(not just the one being built), containers, databases, configurations, scripts, automa‐
tion files, certificates, and certificate chains.13 You can automate functional and secu‐
rity tests, but all detected issues must be verified manually. Perform scans against
container images and running containers to check for known vulnerabilities and con‐
figuration issues, as well as receive mitigations and hardening recommendations.

Once everything is fully tested—including penetration tested—the testing process can
be automated and only “break the build” for serious issues.14 For all other issues, you
can address them by reporting defects or alerting the security team. In-depth testing
should be performed periodically when significant code or configurations change, or
when there are concerns about automated test results.

Cloud Control 05
Control CLD-05: Test and scan all aspects of cloud infrastructure, environment,
and software.

Deploying Immutable Infrastructure and Applications
With all of the components, containers, software, connections, and infrastructure in
cloud environments, it is easy to miss subtle changes made over time. When it comes
time to re-create that environment for disaster recovery or testing purposes, the environ‐
ment is then out of sync with what is documented. Situations such as configuration

DevSecOps | 105

drifts—when new ports and accounts are opened over the lifetime of the infrastructure—
happen even when the most stringent change management processes exist.

To prevent these subtle changes over time, DevSecOps teams fully replace containers
and software with each deployment. Known as “immutable infrastructure,” these sys‐
tems are not changed in any way after being deployed but are instead completely
replaced when something needs to be changed in the infrastructure or software.
Immutable infrastructure is handled solely through source control where there are
managed permissions and a full audit trail of changes.

Setting up an immutable infrastructure requires the operating system to be config‐
ured for not allowing changes, particularly configuration changes, to stay active in the
system. In practice, operating systems introduce some changes while running, such as
temporary files, but these changes can be discarded without negative impact when‐
ever the system is replaced completely.

At the application layer, there are many models for deployment. Cloud orchestrator
tools are the key to automating security updates for containers and containerized
applications. These automatic security updates are referred to as “rolling updates” and
they minimize downtime by scheduling new versions of containers when the old ver‐
sions finish their workloads. If a container image has unauthorized changes or is
defective, rolling updates can revert to older versions. Rolling updates also allow
moving containers from one environment to another, such as moving from a test
environment to a production environment.

Another deployment model, known as “blue green deployment,” transfers user traffic
from a previous version of the application to a newer version, both of which are run‐
ning in production. Plus, if the application architecture is separated into microser‐
vices, you will only need to update a portion of the services, and therefore won’t have
to perform a complete replacement of the system at one time. Using blue green
deployment and microservices will enhance rollback measures, disaster recovery,
business continuity, and resilience by leveraging multiple production environments.

Cloud Control 06
Control CLD-06: Scan for and prevent changes directly to production environments.
Deploy cloud environments using the immutable infrastructure technique.

Securing Connections
Establishing security for cloud environments and applications requires additional
knowledge for securing encryption and network traffic. These are all areas that
should be designed, tested, and monitored on a continuous basis as part of DevSec‐
Ops in order to ensure the security of your cloud environments or applications.

106 | Chapter 6: Cloud and DevSecOps

Encryption is important in all software applications and devices, but there are signifi‐
cantly higher risk and threats to defend against when systems and applications are
exposed publicly. Environments, systems, and applications should use strong encryption
and cryptographic protocols such as the latest version of TLS (Transport Layer Security)
and protection for keys and secrets. HTTP Strict Transport Security (HSTS) is a policy
mechanism to protect websites against man-in-the-middle attacks and should be set to
only allow Hypertext Transfer Protocol Secure (HTTPS) connections.

To secure network traffic, enforce strong network isolation between containers by
configuring the containerized infrastructure appropriately or by using container-
aware tools. Network traffic between containers is often virtualized using software,
making it difficult for traditional network monitoring and filtering software to cap‐
ture the packets normally seen between environments. You can use specific tools,
such as Wireshark, to gain valuable insights into the containers’ network traffic for
improving performance and identifying suspect network transactions.

Cloud Control 07
Control CLD-07: Secure and monitor all connections to, and between, cloud environ‐
ments, containers, and microservices.

Operating and Monitoring
As part of DevSecOps, it is extremely important for development, security, and oper‐
ations teams to cooperatively defend the infrastructure and applications in order to
prevent potential attacks. Attack vectors continue to evolve, and thus the approaches
to secure and defend the cloud environment must also mature and evolve.

In order to monitor the day-to-day health and security posture of cloud environ‐
ments and applications, various dashboards should be accessible and send alerts to
administrators, operations teams, and security operations centers (SOCs). These
dashboards can display information on connections, backups, statuses, alerts, load
balancing, performance, containers, policies, services, vulnerabilities, and logs.

Logging is a key component for effective monitoring. There are many logs in large
cloud deployments, and each one might contain insights into attacks and security
incidents. Logs should be connected to log aggregator tools and to Security Informa‐
tion and Event Management (SIEM) tools that specialize in finding unique security
events. SIEMs are becoming more important with the advent of AI-generated attacks,
but the SIEMs themselves can leverage AI to identify trends, patterns, and
unusual activities.

DevSecOps | 107

A final technique that needs specific mention is the Information Security Continuous
Monitoring (ISCM) tool. It monitors network security, personnel activity, configura‐
tion changes, system components, IT assets, log files, and more. The ISCM tool can
generate alerts, block malicious code, provide recommendations, and scan for
vulnerabilities.

As mentioned in the beginning of the chapter, I recommend reading Practical Cloud
Security: A Guide for Secure Design and Deployment (2nd ed.), for details on securing
cloud environments. Another good reference is DoD Enterprise DevSecOps Reference
Design, which discusses all areas of DevSecOps and provides useful tables that list
activities and tools.15

Site Reliability Engineering
The final component I will mention that contributes to building security into your
cloud environment and applications is site reliability engineering (SRE). SRE refers to
a set of practices and principles that apply software engineering aspects to IT infra‐
structure and operations. In general, SRE includes managing system availability, per‐
formance, efficiency, monitoring, change management, and security engineering.

Good SRE practices lead to secure and efficient cloud environments that can quickly
adapt to the changing threat landscape. The approach identifies weaknesses in the
system by testing production environments and resolving problems before they
become major incidents. To learn more about the nuances of SRE, I recommend the
book Site Reliability Engineering: How Google Runs Production Systems for anyone
serious about cloud performance and security.16

Summary
In this chapter, I discussed the security framework, controls, and requirements organ‐
izations should follow when building cloud infrastructure and applications that are a
critical part of the software supply chain within the supply chain. Before building
cloud security, an organization usually starts by establishing an ISO/IEC 27001 Infor‐
mation Security Management System. From there, an organization can build strong
foundations for cloud security using the Cloud Security Alliance’s Cloud Controls
Matrix and other requirements such as encryption and tokenization. Once an organi‐
zation implements cloud security controls, the next step may involve assessments
such as CAIQ, SOC 2, or FedRAMP.

When teams are ready to start designing, developing, and deploying cloud infrastruc‐
ture and applications, following DevSecOps practices where the development, secu‐
rity, and operations teams collaborate is crucial for building secure cloud
environments. This includes having rigorous change management practices such as
keeping cloud components and artifacts in repositories so no changes can be

108 | Chapter 6: Cloud and DevSecOps

performed directly on production environments. Also requiring immutable infra‐
structures that cannot be modified except through source control, and secure deploy‐
ment models for applications, can increase the resilience of cloud systems.

Throughout the lifecycle of DevSecOps, the connections, environments, and configu‐
rations must be considered and maintained as technologies change or vulnerabilities
are discovered. Cloud security doesn’t stop when the environment is deployed—
teams must continuously work together to maintain security, monitor the environ‐
ments, and take action when situations arise. This teamwork involves development,
security, operations, and, if available, site reliability engineers to keep cloud security
posture high and lower risk throughout the lifecycle. In Chapter 7, I’ll discuss the
risks surrounding intellectual property and data, as well as the controls for protecting
the people and technologies within the supply chain.

References
1 Chris Dotson, Practical Cloud Security: A Guide for Secure Design and Deployment
(O’Reilly, 2023).

2 “ISO/IEC 27001 Standard—Information Security Management Systems”, ISO,
accessed December 11, 2023.

3 Cloud Security Alliance, accessed December 11, 2023.

4 “Cloud Controls Matrix (CCM)”, Cloud Security Alliance, accessed December 11,
2023.

5 “CSA STAR Registry”, Cloud Security Alliance, accessed December 11, 2023.

6 “2018 SOC 2® Description Criteria (with Revised Implementation Guidance—
2022)”, AICPA & CIMA, October 1, 2023.

7 “FedRAMP Authorization Process”, FedRAMP, accessed December 11, 2023.

8 “Cloud Service Providers”, FedRAMP, accessed December 11, 2023.

9 Ramaswamy Chandramouli, Frederick Kautz, and Santiago Torres Arias, Strate‐
gies for Integration of Software Supply Chain Security in DevSecOps CI/CD Pipelines,
National Institute of Standards and Technology, August 2023.

10 A Dockerfile is a text document that contains all the commands to assemble an
image on an operating system command line.

11 PowerShell is a cross-platform (e.g., Windows, Linux, macOS) task automation
solution consisting of a command-line shell, a scripting language, and a configura‐
tion management framework.

12 Sergiu Gatlan, “T-Mobile Hacked to Steal Data of 37 Million Accounts in API
Data Breach”, Bleeping Computer, January 19, 2023.

Summary | 109

https://learning.oreilly.com/library/view/practical-cloud-security/9781098148164
https://www.iso.org/standard/27001
https://cloudsecurityalliance.org
https://cloudsecurityalliance.org/research/cloud-controls-matrix
https://cloudsecurityalliance.org/star/registry
https://www.aicpa.org/resources/download/get-description-criteria-for-your-organizations-soc-2-r-report
https://www.aicpa.org/resources/download/get-description-criteria-for-your-organizations-soc-2-r-report
https://www.fedramp.gov
https://www.fedramp.gov/cloud-service-providers
https://doi.org/10.6028/nist.sp.800-204d.ipd
https://doi.org/10.6028/nist.sp.800-204d.ipd
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach

13 A certificate chain (or Chain of Trust) is a list of certificates that starts from a
server’s certificate and ends with the root certificate.

14 This is when code is committed into a repository but doesn’t compile or doesn’t
work (such as failing unit or regression tests).

15 Department of Defense, DoD Enterprise DevSecOps Reference Design, September
12, 2019.

16 Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy, Site Reliabil‐
ity Engineering: How Google Runs Production Systems (O’Reilly, 2016).

110 | Chapter 6: Cloud and DevSecOps

https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://learning.oreilly.com/videos/site-reliability-engineering/9781663728586
https://learning.oreilly.com/videos/site-reliability-engineering/9781663728586

CHAPTER 7

Intellectual Property and Data

Manipulation or extraction of intellectual property (IP) and data is often the focus in
software supply chain attacks. Intellectual property is any creation of human intellect
in the form of documents, drawings, source code, designs, and more. Unintentional
or intentional sharing of IP and data can ruin a company at any stage—from startup
to maturity. There is no shortage of data breaches and leaks, as shown in the Nira
blog article “51 Biggest Document Leaks & Data Breaches of All Time.”1 Additionally,
malicious actors are always searching for publicly exposed data and intellectual prop‐
erty in cloud storage infrastructure and cloud-based technologies.

Everyone is familiar with malicious actors infiltrating networks to steal data, but the
risk to the software supply chain is not only when they steal information, but also
when they modify or inject false information into the IP or data. Once a malicious
actor infiltrates a network, they generally perform reconnaissance, which could last
days, weeks, or even months. During this time, they learn about the organization and
determine how to cause the most significant damage or make the most money. The
intention of the malicious actor is never clear, and we must do everything we can to
protect our IP and data.

To reduce the risk of IP and data loss, begin by using the infrastructure controls, such
as logging and monitoring, mentioned in Chapter 4. Within this chapter I discuss the
importance of data classification, how people can impact IP and data loss, and the
various threats associated with technologies.

111

Data Classification
Before any discussion on IP or data loss can begin, you first must understand which
data is and is not a risk to your organization if it is lost. A malicious actor download‐
ing public documents from an internal repository would be of no risk to an organiza‐
tion, but downloading employee personal data would likely be a significant risk to the
employees. As an organization, you should identify all types of data to determine
their value and what risks exist from exposed data. An organization may have several
levels of confidential and nonconfidential classifications.2 At a minimum, your orga‐
nization should have public, internal, and restricted levels. Data classification also
ensures you comply with certain regulations and don’t waste resources protecting
nonsensitive data.

Create data classification processes and awareness campaigns for all employees and
contractors. This should include a process for classifying data such as source code,
architecture information, hardware designs, internal organization data, personal
identifiable information (PII), and personal health information (PHI), and then
implementing controls for securing the information. Your organization may even use
the term “crown jewels” to represent data that is confidential, mandatory for business
continuity, or a high-value target for malicious actors. It’s critical to prioritize your
security efforts and investment for crown jewels, such as PII, to reduce risk, impacts,
and potential government fines or lawsuits if data is breached.

Every organization should have a data classification policy so its employees, contrac‐
tors, and suppliers know exactly which data falls under which categories. The most
important aspect of a data classification policy is providing the detailed definitions,
criteria, and examples for your organization to follow. Without a policy, it is up to the
discretion of each person to determine if something is public, internal, or restricted.
This could lead to all types of data loss risk, such as someone releasing financials
before the quarterly earnings call or a developer uploading proprietary code to a pub‐
lic troubleshooting site (i.e., Stack Overflow).3 Once you know what you have to pro‐
tect, the next step is to figure out what you need to protect it from. When it comes to
IP data loss, you need to be vigilant against risks posed by people, processes, and
technology.

Intellectual Property and Data Control 01
Control IPD-01: Maintain a data classification policy with definitions, criteria, and
examples.

112 | Chapter 7: Intellectual Property and Data

People
Whether you’re in a small or large organization, there are people throughout who
have knowledge of confidential information that the organization cannot afford to
have released to the public. Leakage of restricted organizational processes, such as the
software build process or configuration instructions, can result in significant intellec‐
tual property loss. It can be as innocent as incorrectly placing confidential process
files in a public location or losing a USB drive, which can compromise an entire
organization or customer.

In terms of software supply chain security, the people introducing risk are often the
developers, architects, testers, build managers, product managers, and leaders who
are building a product or application. The intellectual property may be written on
whiteboards and in notebooks, documents, spreadsheets, presentations, and email; or
it can be stored in many other places. Organizations are at risk when information is
disclosed accidentally (human error) or intentionally (insider threat)—for example,
through public social sites such as X (previously known as Twitter) before the prod‐
uct is made public, which happened to Microsoft, Apple, and other organizations.4,5

Accidental disclosure can occur when employees working with a supplier or cus‐
tomer mistakenly release information that should not have been sent to those parties.
Many of these mistakes are unintentional and are simply people intending to be help‐
ful. Social engineering or stolen access credentials, according to Verizon’s 2023 Data
Breach Investigations Report, account for 74% of breaches involving the human ele‐
ment.6 For example, malicious actors can use social engineering techniques to per‐
suade technical teams to send IP about a product or project. IP loss also occurs when
technical employees are phished through fraudulent job postings. During fake inter‐
views, they may release information regarding technical details, administrative login
information, suppliers or customers they are working with, or classified projects.7 In
Chapter 11, I will discuss approaches for better compliance, awareness, and training
to reduce the risk of accidental disclosures.

Insider threats come from people within the organization, such as employees, former
employees, or contractors, who have internal information concerning the organiza‐
tion’s people, process, projects, data, and technology. IP theft is frequent enough in
the technology space that the Digital Guardian blog was able to list nearly 50 espion‐
age and IP thefts of secrets, data, technology, source code, customer information, and
confidential documents.8 Many of the cases resulted in significant legal costs, prison
time, and businesses closing permanently, as was the case where someone was sen‐
tenced to 70 months in prison for stealing trade secrets of an anti-ice aircraft for
a competitor.

People | 113

It is important to maintain an ethics policy for employees and contractors, and the
policy should be referenced in the data classification and security awareness pro‐
grams.9 You may also require your employees and contractors to sign nondisclosure
agreements (NDAs) to prevent them from sharing confidential information, and this
also provides your organization legal recourse if necessary. However, do not solely
rely on an NDA to stop IP theft; as reported in CPO Magazine, an NDA was not
enough to prevent someone from releasing 20 GB of confidential and restricted data
about the Intel chipset platforms.10

Intellectual Property and Data Controls 02–03
Control IPD-02: Maintain an ethics policy that references the data classification pol‐
icy and the compliance responsibility for employees and contractors. Monitor for
compliance with the policies and, when applicable, nondisclosure agreements.

Control IPD-03: Educate all employees and contractors about intellectual property
and data loss risks with training on data classifications, ethics, and compliance.

Technology
In addition to risk from people within the organization, IP and data loss can result
from insecure or misconfigured technologies. Many of these technology risks have
already been noted in Chapter 3, which describes developer tools and other technol‐
ogy controls meant to reduce the security risk.

All technologies in your organization are at risk if malicious actors take possession of
business or development systems that contain restricted and confidential informa‐
tion. Even the business enterprise applications, such as the supply chain data within
the enterprise resource planning (ERP) systems, present risks specifically to software
and products. For example, the enterprise applications may contain supplier assess‐
ment results such as risks, deficiencies, and action plans. If a malicious actor gains
access to the risk assessments performed on suppliers, they could use that informa‐
tion to locate the less secure suppliers and infiltrate one, thereby jeopardizing the
software supply chain.

Although preventing attacks should be the primary focus of stopping data loss, you
should implement detective controls such as monitoring and logging to find irregu‐
larities, suspicious behavior, and malicious actors. This would include any systems
with restricted or confidential information, such as email platforms and collaboration
tools (i.e., Slack, Microsoft Teams) that your organization uses as part of the software
and product lifecycle. The following sections contain some additional examples of
technology risks, which frequently lead to IP and data loss.

114 | Chapter 7: Intellectual Property and Data

Intellectual Property and Data Control 04
Control IPD-04: Safeguard confidential and sensitive data in all infrastructure, tech‐
nologies, and systems. Monitor systems and application logs for indicators of
data loss.

Data Security
Protecting digital information from theft, corruption, or unauthorized access is one
of the main requirements in securing the software supply chain. Many technologies
and techniques exist for data security, including data encryption, data protection, and
data loss prevention solutions that can identify, protect, and track sensitive data
within a company.

Data encryption can come in many forms, but the best encryption to use will depend
on the state of the data, as shown in Figure 7-1: data at rest, data in transit, and data
in use. Data at rest is any stored data not being accessed and typically includes data in
file servers, databases, USB keys, hard drives, etc. Data in transit is any data in motion
as it travels through email, web servers, collaboration tools, and across communica‐
tion protocols. Data in use includes data that is opened by applications for the
consumption of users.

Figure 7-1. The three states of data to encrypt

Encryption techniques can come in many forms, as listed in Table 7-1. The data is
considered secure as long as the decryption key is not located with the data and the
encryption algorithm is currently unbroken. However, using multiple protections is
best since quantum computing will eventually break modern cryptography.

Technology | 115

Table 7-1. Encryption techniques

Data type Data security techniques
Data at rest • Database encryption

• Data masking
• Full-disk encryption
• File-level encryption
• Device encryption
• Data loss prevention (DLP)
• Mobile device management (MDM)
• Digital rights management (DRM)
• Cloud access security brokers (CASB)

Data in transit • Encrypted connections (HTTPS, SSL, TLS, FTPS, etc.)
• Email encryption
• Data loss prevention
• Managed file transfer (MFT)
• Cloud access security brokers

Data in use • Identity access management (IAM)
• Role-based access tools (RBAC)
• Data masking
• Digital rights management

Specifically designed for data security, the various data loss prevention solutions can
identify violations of privacy regulations (e.g., GDPR, HIPAA, PCI-DSS) and an
organization’s internal data classification policies. However, DLP solutions are only
effective when configured properly and given full visibility into the organization’s
applications and infrastructure.

A new concern for data security occurs when intellectual property and private data
are used to train AI models. Data leaks can emerge if a user inserts confidential infor‐
mation into the AI prompt, as seen repeatedly when patient information and confi‐
dential business documents were uploaded to ChatGPT after it went public.11 Even
internal large language models (LLMs) can disclose confidential data if the informa‐
tion provided in the prompts is not classified properly. For example, if a payroll
administrator uploaded a salary report into the LLM for it to create a summary, it’s
possible another user could prompt the LLM to find out who the highest-paid
employees are in the organization. Your organization should evaluate the LLM licen‐
ses and set organizational policies on how to use AI tools to be compliant with the
data classification policy and mitigate the data security risks.

116 | Chapter 7: Intellectual Property and Data

Intellectual Property and Data Controls 05–06
Control IPD-05: Implement data security techniques to secure data at rest, in transit,
and in use.

Control IPD-06: Maintain an artificial intelligence (AI) policy for the usage of public
and private large language models (LLMs) in compliance with the data classification
policy and data security requirements.

Loss of Code, Keys, and Secrets
One of the largest and most common issues in regard to IP and data loss in the soft‐
ware supply chain is when source code is accidentally released to public code reposi‐
tories. Accidental code release is common enough that the GitHub code repository
even provides instructions for removing sensitive data from a repository.12 Code
release is a concern for organizations of any size; there have been many situations
where confidential source code from Toyota, Samsung, Intel, and Google have been
placed in public locations.13,14 The companies generally claim that the source code
loss was not a significant risk since many different tools can reverse engineer the
source code.

Unfortunately, when source code is accidentally released to the public, other secrets
may become public at the same time, such as private keys and credentials, testing
reports, project documents, threat models, and more. All information regarding data
sources, file paths, accounts, connections strings, and configurations must be kept
secure. For example, database information such as table names, column names, and
security roles, as well as internal directory and file paths, can inform malware devel‐
opers on approaches for infiltrating systems.

The loss of private keys and improper key management can lead to complete data loss
or system compromise for an application or system. In the case of Toyota, the code
was public for over five years with hardcoded data server access credentials. Sam‐
sung’s source code contained 6,695 secrets, according to GitGuardian. One massive
intellectual property loss was announced in October 2021, when over 120 security
tools created by the Amazon-owned Twitch security team were leaked as part of a
large data breach.15 Several of the security IP leaks included Twitch’s threat hunting
playbooks and threat detection tools. This information can be valuable to a threat
actor looking for gaps in Twitch’s testing process.

Another loss of keys occurred in December 2022, when an engineer at a CI/CD soft‐
ware company, CircleCI, had malware on an engineering laptop.16 This malware was
able to execute a session cookie theft to steal the engineer’s credentials for a produc‐
tion system. The malicious actor accessed and exfiltrated data including customer

Technology | 117

environment variables, tokens, and keys. A customer detected the theft within two
weeks and alerted CircleCI, who reset all production credentials and employee
accounts. There are many more real-life examples of lost or stolen code, key, and
secrets. For specific guidance on preventing this loss, refer to the infrastructure and
source code security controls in Chapters 3 and 6.

Key management tools such as HashiCorp Vault, Azure Key Vault, or AWS Secrets
Manager can create, exchange, store, delete, and refresh keys, in addition to manag‐
ing the access controls associated with those functions. Encryption keys should never
be hardcoded into products and applications, or stored in web content directories
and backups. At a minimum, an organization should have the following key manage‐
ment practices, as described in the OWASP “Key Management Cheat Sheet”:17

• Key lifecycle management (generation, distribution, destruction)
• Key compromise, recovery, and zeroization
• Key storage
• Key agreement

Digital certificates authenticate the owner’s identity and are another form of secrets
that should be managed securely. The certificate uses cryptography and a public key
to prove the authenticity of a server, device, or user. During the SolarWinds compro‐
mise, Mimecast had digital certificates stolen, and that allowed the threat actor to
intercept traffic of organizations using Mimecast products on Microsoft 365
Exchange servers.18 As mentioned in the previous section, you should deploy solu‐
tions that monitor for sensitive data and also configure existing platforms to log
whenever someone accesses, moves, shares, modifies, or deletes data. If an action
appears suspicious, the tools can raise alerts or send notifications to the security
teams.

Intellectual Property and Data Controls 07–08
Control IPD-07: Monitor for data loss of code, secrets, certificates, and keys using
technologies and services.

Control IPD-08: Implement key management systems to secure secrets, tokens, keys,
and other intellectual property.

Design Flaws
Design flaws in the products or applications your organization creates can lead to
data loss through many methods, including vulnerabilities in applications, improper
access management or lack of access controls, and unencrypted data at rest or in

118 | Chapter 7: Intellectual Property and Data

transit. Threat modeling, security testing, and penetration testing can be used to
detect design flaws before data loss occurs. Careful attention to design in the early
stages of a project can potentially reduce rearchitecting the product or application to
reduce design flaws.

The OWASP Top 10, as discussed in Chapter 4, and software composition analysis tools
can also identify potential design flaws. Specifically, the OWASP “A04:2021—Insecure
Design” weakness is the fourth-highest flaw in the web application secure development
list.19 Insecure design is the lack of adequate controls in the application or product to pro‐
tect or resist against threat attacks. Design flaws can include ignoring secrets manage‐
ment, implementing weak identity management, designing poor access controls, rejecting
uncontrolled external inputs, and accepting untrusted data.20

A strong list of potential design flaws is in the Common Weakness Enumeration
(CWE) list maintained by MITRE.21 This community-developed list describes one
thousand weaknesses, which are referenced in the OWASP Top 10, the MITRE CWE
Top 25, and in many security articles such as Endor Lab’s Top 10 Open Source Soft‐
ware Risks.22 The CWE warning notifications are reported by code analysis and
threat modeling tools. These warnings, when remediated with secure design tech‐
niques, can prevent many design flaws.

Intellectual Property and Data Control 09
Control IPD-09: Use secure by design, privacy by design, threat modeling, security
testing, and penetration testing to prevent, detect, and remediate design flaws.

Configuration Errors
Additional common data risks are when misconfigurations occur in technologies or
systems such as databases, data storage services, integrations with third-party tools,
and excessive permissions. Every month there are news articles where a researcher
located a misconfigured cloud data repository (such as an Amazon S3 bucket).
According to the research firm Gartner, “through 2025, 90% of the organizations that
fail to control public cloud use will inappropriately share sensitive data.”23 Even high-
technology companies, such as Microsoft, have misconfigured their systems, which
then resulted in large data leaks. In 2022, SOCRadar disclosed Microsoft’s 2.4 TB data
leakage of five years of customer contracts and other data.24 Then in 2023, Wiz
Research detected a misconfigured token exposing 38 TB of Microsoft’s private data
when the Microsoft AI research team published a bucket of open source AI training
data.25 Although cloud repositories and systems are now usually set to “secure by
default” on deployment, there still seems to be many cases where data is

Technology | 119

unintentionally left exposed with no logging to identify who has accessed or down‐
loaded the data.

There are tools and services that scan for confidential information using techniques,
such as file fingerprinting, or monitoring the dark web, where data may be available
for sale.26 The same risk management techniques, such as threat modeling and
CWEs, mentioned earlier in “Design Flaws” on page 118, also apply to configuration
errors. Specific attention should be given to unrestricted inbound and outbound
ports, lack of monitoring and logging, protocol configurations, reviewing configura‐
tions on a repetitive basis, and access control.

Intellectual Property and Data Control 10
Control IPD-10: Secure all infrastructure, system, and application configurations.
Regularly review configurations and perform threat modeling to identify risks.

Application Programming Interfaces (APIs)
Another data risk involves APIs, which provide access to data, applications, and serv‐
ices. APIs can retrieve enormous amounts of private data and need to be fully
secured, as discussed in “API Security” on page 104. Unfortunately, there are many
cases where APIs are compromised through poor authentication, which was the case
for the data leaks at the Parler, Clubhouse, and LinkedIn organizations in 2021.27

Threats to products and applications will continue to grow as malicious actors lever‐
age APIs to access products, applications, and systems. OWASP has a specific API
Security Top 10 list, which should be used during design, threat modeling, develop‐
ment, and testing.28 Security testing and penetration testing may sometimes not cover
the full scope of risks, but automating tests on APIs is ideal to support regression
tests. It is vital that APIs be tested fully to prevent data loss or manipulation, which
can unfortunately lead to safety risks when products such as medical or vehicle sys‐
tems are compromised. Fortunately, a team of researchers, led by Sam Curry, prac‐
ticed responsible disclosure to vehicle manufacturers when they found a large
number of API vulnerabilities that could have stopped and started engines, unlocked
cars, changed vehicle ownership, and caused other serious issues.29

Intellectual Property and Data Control 11
Control IPD-11: Design secure APIs and perform threat modeling, security testing,
and penetration testing on APIs.

120 | Chapter 7: Intellectual Property and Data

Vulnerabilities
IP and data loss can often occur from vulnerabilities in products, systems, or infra‐
structure (e.g., Microsoft Active Directory, Linux operating system, or Cisco routers)
not specifically associated with the data itself. Vulnerabilities can be leveraged in API
attacks and by using misconfigurations or unremediated design flaws. Using vulnera‐
bilities, the threat actors can enter systems, elevate their access, steal data, and then
destroy system data through encryption or ransomware.

Patching systems is one of the best preventative measures to stop data loss due to vul‐
nerabilities. One of the most recognized critical vulnerabilities, Log4Shell
CVE-2021-45046, can lead to exfiltration of data from logging libraries.30 Sometimes
the application and system patches may not be available in time, which was the case
for the ONUS fintech firm compromised through a Log4j vulnerability in its payment
system.31 Threat actors ransomed the data for $5M USD, and when ONUS refused to
pay, its two million customers’ data was put up for sale by the threat actors. When the
threat actors were in the ONUS systems, they also leveraged a misconfigured
Amazon S3 bucket to reach additional sensitive data.

Intellectual Property and Data Control 12
Control IPD-12: Patch vulnerabilities in infrastructure, systems, and applications to
prevent IP and data loss.

Summary
In this chapter, I discussed the various risks and threats to software supply chain
security with a focus on intellectual property and data loss. An organization can
reduce many of these risks with data classification and ethics policies, education for
employees and contractors on the policies, and compliance monitoring of the poli‐
cies. Also, consider the threats insiders pose to organizations with the release of sensi‐
tive data and intellectual property.

Of course, technologies contribute to IP and data loss with accidental leakage to pub‐
lic locations, and through insecure design, misconfigurations, APIs, and vulnerabili‐
ties. Using the controls in this chapter, as well as in Chapters 3 and 4, will reduce the
risk of IP and data loss. In Chapter 8, I describe how transparency of software, firm‐
ware, hardware, and processes can increase trust and awareness of the software
supply chain.

Summary | 121

References
1 Ashleigh Bugg, “51 Biggest Document Leaks & Data Breaches of All Time”, Nira
(blog), November 17, 2021.

2 Sherif Koussa, “What Do SAST, DAST, IAST and RASP Mean to Developers?”
Software Secured, accessed December 11, 2023.

3 Ryan Donovan, “Copying Code from Stack Overflow? You Might Paste Security
Vulnerabilities, Too”, Stack Overflow Blog, November 26, 2019.

4 “Employee Accidentally Releases Microsoft Windows 11 Notepad. Read More”,
Economic Times, December 26, 2022.

5 Gordon Kelly, “Apple IOS 15.5 Code Leaks New Upgrades for iPads, iPhones”,
Forbes, April 19, 2022.

6 Verizon, 2023 Data Breach Investigations Report, 2023.

7 Danny Palmer, “Security Warning for Software Developers: You Are Now Prime
Targets for Phishing Attacks”, ZDNET, August 13, 2019.

8 Chris Brook, “IP Theft: Definition and Examples”, Digital Guardian (blog), Octo‐
ber 26, 2023.

9 “Ethics Policy”, SHRM, accessed January 3, 2023.

10 Alicia Hope, “Massive Data Breach Exposes Intel’s Intellectual Property for Its
Flagship CPUs and SpaceX Sensors”, CPO Magazine, August 14, 2020.

11 Robert Lemos, “Employees Are Feeding Sensitive Biz Data to ChatGPT, Raising
Security Fears”, Dark Reading, March 7, 2023.

12 “Removing Sensitive Data from a Repository”, GitHub, accessed December 11,
2023.

13 Dwayne McDaniel, “Toyota Suffered a Data Breach by Accidentally Exposing a
Secret Key Publicly on GitHub”, GitGuardian (blog), October 11, 2022.

14 Mackenzie Jackson, “Samsung and Nvidia Are the Latest Companies to Involun‐
tarily Go Open-Source Leaking Company Secrets”, GitGuardian (blog), March 9,
2022.

15 Mazin Ahmed, “Twitch Internal Security Tools: In-Depth Analysis of the Leaked
Twitch Security Tools”, Mazin Ahmed (blog), June 1, 2022.

16 Rob Zuber, “CircleCI Incident Report for January 4, 2023 Security Incident”,
CircleCI (blog), January 13, 2023.

17 “Key Management Cheat Sheet”, OWASP Cheat Sheet Series, accessed December
11, 2023.

122 | Chapter 7: Intellectual Property and Data

https://nira.com/data-breaches-and-leaks
https://www.softwaresecured.com/what-do-sast-dast-iast-and-rasp-mean-to-developers
https://stackoverflow.blog/2019/11/26/copying-code-from-stack-overflow-you-might-be-spreading-security-vulnerabilities
https://stackoverflow.blog/2019/11/26/copying-code-from-stack-overflow-you-might-be-spreading-security-vulnerabilities
https://economictimes.indiatimes.com/news/new-updates/employee-accidentally-releases-microsoft-windows-11-notepad-read-more/articleshow/96520511.cms
https://www.forbes.com/sites/gordonkelly/2022/04/19/apple-iphone-14-pro-max-ios-16-upgrade-new-features
https://www.verizon.com/business/resources/reports/dbir
https://www.zdnet.com/article/security-warning-for-software-developers-you-are-now-prime-targets-for-phishing-attacks
https://www.zdnet.com/article/security-warning-for-software-developers-you-are-now-prime-targets-for-phishing-attacks
https://digitalguardian.com/blog/ip-theft-definition-and-examples
https://www.shrm.org/ResourcesAndTools/tools-and-samples/policies/Pages/employee-ethics.aspx
https://www.cpomagazine.com/cyber-security/massive-data-breach-exposes-intels-intellectual-property-for-its-flagship-cpus-and-spacex-sensors
https://www.cpomagazine.com/cyber-security/massive-data-breach-exposes-intels-intellectual-property-for-its-flagship-cpus-and-spacex-sensors
https://www.darkreading.com/risk/employees-feeding-sensitive-business-data-chatgpt-raising-security-fears
https://www.darkreading.com/risk/employees-feeding-sensitive-business-data-chatgpt-raising-security-fears
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years
https://blog.gitguardian.com/toyota-accidently-exposed-a-secret-key-publicly-on-github-for-five-years
https://blog.gitguardian.com/samsung-and-nvidia-are-the-latest-companies-to-involuntarily-go-open-source-potentially-leaking-company-secrets
https://blog.gitguardian.com/samsung-and-nvidia-are-the-latest-companies-to-involuntarily-go-open-source-potentially-leaking-company-secrets
https://mazinahmed.net/blog/indepth-analysis-twitch-security-tools
https://mazinahmed.net/blog/indepth-analysis-twitch-security-tools
https://circleci.com/blog/jan-4-2023-incident-report
https://cheatsheetseries.owasp.org/cheatsheets/Key_Management_Cheat_Sheet.html

18 “Incident Report”, Mimecast, March 16, 2021.

19 “A04:2021—Insecure Design”, OWASP Top 10, accessed January 7, 2023.

20 Secrets management refers to the methods and tools for managing the creden‐
tials of passwords, keys, tokens, and APIs in products, applications, systems, services,
accounts, and technologies.

21 Common Weakness Enumeration, accessed November 18, 2023.

22 Ron Harnik, “Introducing the Top 10 Open Source Software (OSS) Risks”, Endor
Labs (blog), March 1, 2023.

23 Kasey Panetta, “Is the Cloud Secure?” Gartner, October 10, 2019.

24 “Sensitive Data of 65,000+ Entities in 111 Countries Leaked Due to a Single Mis‐
configured Data Bucket”, SOCRadar, October 19, 2022.

25 Hillai Ben-Sasson and Ronny Greenberg, “38TB of Data Accidentally Exposed
by Microsoft AI Researchers”, Wiz (blog), September 18, 2023.

26 File (or data or document) fingerprinting is a technique to identify and track
data across a network. Examples include locating source code in text files or specific
financial data in spreadsheets.

27 Ran Ilany, “5 Real-World API Security Breaches from 2021”, Panoptica (blog),
April 14, 2022.

28 “OWASP API Security Project”, OWASP, accessed January 8, 2023.

29 Sam Curry, “Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Fer‐
rari, BMW, Rolls Royce, Porsche, and More”, Sam Curry, January 3, 2023.

30 “CVE-2021-45046 Detail”, NIST | National Vulnerability Database, accessed Jan‐
uary 8, 2023.

31 Ax Sharma, “Fintech Firm Hit by Log4j Hack Refuses to Pay $5 Million Ran‐
som”, Bleeping Computer, December 29, 2021.

Summary | 123

https://www.mimecast.com/incident-report
https://owasp.org/Top10/A04_2021-Insecure_Design
https://cwe.mitre.org
https://www.endorlabs.com/blog/introducing-the-top-10-open-source-software-oss-risks
https://www.gartner.com/smarterwithgartner/is-the-cloud-secure
https://socradar.io/sensitive-data-of-65000-entities-in-111-countries-leaked-due-to-a-single-misconfigured-data-bucket
https://socradar.io/sensitive-data-of-65000-entities-in-111-countries-leaked-due-to-a-single-misconfigured-data-bucket
https://www.wiz.io/blog/38-terabytes-of-private-data-accidentally-exposed-by-microsoft-ai-researchers
https://www.wiz.io/blog/38-terabytes-of-private-data-accidentally-exposed-by-microsoft-ai-researchers
https://www.panoptica.app/blog/real-world-api-security
https://owasp.org/www-project-api-security
https://samcurry.net/web-hackers-vs-the-auto-industry
https://samcurry.net/web-hackers-vs-the-auto-industry
https://nvd.nist.gov/vuln/detail/CVE-2021-45046
https://www.bleepingcomputer.com/news/security/fintech-firm-hit-by-log4j-hack-refuses-to-pay-5-million-ransom
https://www.bleepingcomputer.com/news/security/fintech-firm-hit-by-log4j-hack-refuses-to-pay-5-million-ransom

CHAPTER 8

Software Transparency

The practice of transparency—the deliberate disclosure of hidden software attributes
including origins, composition, and build and test processes—has become important
in today’s technical world, where little is known about the software, firmware, or
hardware that enables every aspect of our lives. Software transparency, and really any
transparency in technology, means that the creator or manufacturer has disclosed
information about what is inside the product or services and how it was made. This
disclosure builds a connection between the parties and hopefully builds trust into the
relationship.

Transparency measures are routine in many consumer products, such as the ingredi‐
ents list on a box of packaged food. But there are significant differences between that
example and software transparency. Generally, packaged food does not provide the
source of the ingredients unless it is highlighted for marketing reasons. A stick of but‐
ter, for example, lists components (pasteurized cream and salt), potential risks (con‐
tains milk), and may include provenance of some components (cows from Ireland),
but it does not describe the architecture (recipe), known risks (lactose intolerance),
and other provenance (location where the salt was mined, what equipment was used,
and the location where the butter was manufactured).

Now let’s look at a more complicated example. Consider the transparency of a smart‐
phone, as shown in Figure 8-1. Transparency would, at a minimum, include disclos‐
ing the following information for the smartphone:

Hardware components
Which manufacturer created the Bluetooth hardware?

Firmware
Who designed and developed the Bluetooth firmware?

125

Embedded software
What operating system is used?

Application software
Which preinstalled mobile applications are included?

Figure 8-1. Transparency of a device

Transparency would also include information about who coded and administered the
software, how the code was compiled and built, and where everything was designed,
developed, produced, assembled, and delivered. Transparency gives you a view into
how the product or service is made, and you can use this information to identify
areas of risk throughout the product or service’s supply chain. For example, a smart‐
phone has many opportunities for compromise in the software supply chain during
the software development or manufacturing processes, because there were thousands
of participants and activities that went into building the device. Transparency will not
give you the risks themselves, but it can indicate where there could be a risk. It does

126 | Chapter 8: Software Transparency

this by exposing the organizations who created the components, how they were cre‐
ated, and where the product or service was built.

Software Bill of Materials (SBOM)
The definition of an SBOM, as written in US Executive Order (EO) 14028, is “a for‐
mal record containing the details and supply chain relationships of various compo‐
nents used in building software. Software developers and vendors often create
products by assembling existing open source and commercial software components.
The SBOM enumerates these components in a product.”1

Some people might associate software transparency as being the same as an SBOM,
but that is only part of it. Software transparency is about having visibility into the
components or libraries, architectures, design elements, security features, testing
results, potential threats and risks, known vulnerabilities, and provenance. Many
decisions—such as whether to trust software—rely on transparency to provide the
basis for trustworthiness. It also may be requested by laws or regulations, such as the
US Food and Drug Administration’s Section 524(b).2 This chapter discusses these
aspects as well as how to provide evidence of transparency through various mecha‐
nisms such as SBOMs, vulnerability disclosures, software attestations, provenance,
and artifacts. For an even deeper discussion on software transparency, I recommend
the book Software Transparency: Supply Chain Security in an Era of a Software-Driven
Society by Chris Hughes and Tony Turner.3

Software Transparency Use Cases
Before discussing how to provide evidence of software transparency (which includes
SBOMs), you must first understand what transparency aims to capture and why hav‐
ing this information is so valuable. There are many potential ways that software
transparency can benefit organizations, and these benefits or use cases can be split
into three different roles:

Producer
Creates software transparency information for themselves and potentially others

Chooser
Uses software transparency information to understand the software before
making a purchase decision

Operator
Makes decisions about software risk based on software transparency information

Software Transparency Use Cases | 127

Depending on your organization’s mission, you may be in just one role, two of the
roles, or all three roles. For example, an organization may produce SBOMs for its
products, it may choose a supplier based on the content within an SBOM, or it may
reference an SBOM during the operation of a product. It is important to understand
why your organization needs transparency and how that information will be used.
When you know that, you can then determine what technologies and processes in
your organization need transparency.

First, for producers of software, after gathering the software transparency informa‐
tion, you can use it for the following purposes:

• Monitoring components for vulnerabilities and end of life (EOL)
• Learning what is included within the software or component, which can promote

code reuse and reduce work
• Understanding dependencies within larger projects
• Reducing code bloat by standardizing on component versions or removal of

unnecessary code
• Knowing and complying with license obligations, as well as software prohibited

by regulators or your organization

As a producer, your organization must define how the customers will obtain the soft‐
ware transparency information. This information can be provided with the product
itself, through a third-party service, a customer portal, or another mechanism. You
may choose to provide the software components, vulnerability information, and
provenance details. Many of the decisions you make will depend on your customers
and how they expect to retrieve and ingest the information.

Second, for choosers of software, after receiving the software transparency informa‐
tion prior to supplier selection, you can use it for the following purposes:

• Identifying potential vulnerable and end-of-life components
• Targeting analysis for security concerns and risks
• Verifying the sourcing and claims
• Understanding the software’s integrations
• Knowing and complying with license obligations, as well as software prohibited

by regulators or your organization

As a chooser, your organization may have certain guidelines prescribed by the pro‐
curement or security teams when selecting software. If you are operating critical
infrastructure, for example, your organization may have regulations to comply with,
such as minimum encryption requirements or compliance laws. Your procurement
teams may use the absence of transparency as a negotiating point, perhaps to request

128 | Chapter 8: Software Transparency

discounts or other considerations, due to the additional unknown risk they may be
accepting.

Third, for software operators, after receiving the software transparency information
for operations, you can use it for the following purposes:

• Evaluating whether the software is using a specific component
• Identifying potential vulnerable and end-of-life components
• Making more informed risk-based decisions
• Defining mitigations or compensating controls
• Minimizing attack surfaces by disabling features or modifying configurations
• Knowing and complying with license obligations, as well as software prohibited

by regulators or your organization
• Understanding the use cases in which software can be relied upon and when it

cannot

As an operator, your organization may use the software transparency information in
operations, but at the time of publication there were still a limited number of tools
that could ingest, or consume, the information for operational decision making. In
November 2023, the Enduring Security Framework released the document Securing
the Software Supply Chain: Recommended Practices for Software Bill of Materials Con‐
sumption to guide organizations on the consumption and use of SBOMs.4 Asset man‐
agement databases, as well as security operations tools, are adding capabilities to take
in the software transparency information for risk monitoring or determining actions.
However, the ability to make automated decisions based on the information requires
a level of detail not found in most software transparency information, specifically the
Vulnerability Exploitability eXchange (VEX) details for an SBOM.

Vulnerability Exploitability eXchange
According to the VEX working group, as part of a public-private partnership under
the US Cybersecurity & Infrastructure Security Agency (CISA), a VEX is “a form of a
security advisory that indicates whether a product or products are affected by a
known vulnerability or vulnerabilities.” A VEX allows a supplier or other party to
assert the status of specific vulnerabilities in a product.5

The combination of SBOM and VEX together establishes a powerful approach to vul‐
nerability management for software operators.6 Organizations are starting to generate
VEX records for their products, but the volume of VEX records and the time
required by development teams to validate the statuses is very high if all potential

Software Transparency Use Cases | 129

vulnerabilities are assessed. However, by focusing on known exploitable vulnerabili‐
ties, such as the CISA KEV (Known Exploited Vulnerabilities) catalog, a team can
focus on the highest-priority vulnerabilities.

For example, if you have a network router and want to know if it was susceptible to a new
zero-day vulnerability, you would need to have the correct version of the SBOM and the
manufacturer’s (or trustworthy service’s) VEX information confirming if the vulnerabil‐
ity was or was not affecting the router. Figure 8-2 shows the process flow on how, at some
point in the future, the SBOM and VEX information can be used to make decisions or
take action. In this example, the flow checks if a product deployed in an organization is
affected by a known exploitable vulnerability—in this case, CVE 2034-98765—within an
open source library. If the VEX information is not available, the organization should
assume the product is impacted until confirmed by the vendor.

Figure 8-2. Software transparency in operations

130 | Chapter 8: Software Transparency

There are many more use cases that your organization may have for software trans‐
parency information. By understanding the benefits, you can determine the value and
potentially the return on investment (ROI) to your organization based on the various
software transparency use cases.

Software Bill of Materials (SBOM)
As mentioned previously, software transparency isn’t only an SBOM, but an SBOM is
an important part of software transparency. The National Telecommunications and
Information Administration (NTIA), part of the US Department of Commerce,
established in 2018 a series of software component transparency working groups that
were reconstructed in 2022 within the Cybersecurity and Infrastructure Security
Agency (CISA), part of the US Department of Homeland Security.7 These working
groups are partnerships between the government and private sector experts, such as
myself, and our primary work products are the definitions and recommended practi‐
ces for the use of SBOMs. For information on the working groups and documents,
refer to the CISA SBOM website.8

To understand SBOMs, you must first recognize that a product or service can be a combi‐
nation of many components. Figure 8-3 shows an SBOM graph example for a medical
infusion pump product with four software components and three software subcompo‐
nents. This SBOM graph shows a very simple SBOM, but an SBOM could have dozens or
hundreds of components; when the subcomponents are included, there could be a thou‐
sand or more components and subcomponents within a single SBOM.

Figure 8-3. Example SBOM graph

Software Bill of Materials (SBOM) | 131

The SBOM itself is usually a machine-readable file that lists various elements such as
the software component names and versions used in the software or firmware. The
highest-quality SBOMs are generated during the build process when all the compo‐
nents are known, though the tool may not know all the subcomponents. There are
many different ways to generate an SBOM, as described in the following list:

• From source code repositories in prebuild using a tool, plugin, or version control
system

• During the software build process using a specialized tool or plugin
• By orchestrating an SBOM during the prebuild, build, and postbuild activities
• With a postbuild binary analysis tool inspecting the binaries
• Using specialized tools while the software is running

Prebuild SBOM tools are specific to a programming language or ecosystem, such as
C++, .NET, Node.js, NPM, Maven, Rust, Python, or Go. SBOMs should be generated
for every build, and specifically the SBOMs of production software need to be
retained for customers. For a list of build integration SBOM tools, I recommend the
CycloneDX Tool Center and SPDX Tools page, which are both updated frequently
with a large list of commercial and open source software tools.9

When the SBOM is generated postbuild using analysis or inspection tools, the tools
generally cannot recognize commercial and proprietary components because the fin‐
gerprints for those components are not widely known. For example, a proprietary
calculation library I’ll call cassie_calcs would not be recognized by commercial or
OSS tools, yet it could be used in a dozen different products within my fictitious
organization. If at some time there was a critical vulnerability in cassie_calcs, it
would be important to my customers to know which products contained that propri‐
etary library. The only way they would know is if I provide SBOMs that noted the
library. This transparency is also needed for any libraries I purchased from
commercial suppliers.

For SBOMs to provide value to choosers of software or software operators, they must
be shared beyond the development teams. There are so many possibilities to share or
exchange SBOMs, as described in the following list:

• Direct sharing between a software publisher and customer through an SBOM-
sharing mechanism (e.g., API, document repository, or email)

• Storing the SBOM or reference directly within the software or firmware or
through a manufacturer usage description (MUD) schema10

132 | Chapter 8: Software Transparency

• Publishing it on a publicly or privately accessible portal
• Publishing it to a third party such as an Information Sharing and Analysis Center

(ISAC) or a risk management service

However, a number of organizations consider SBOMs to be intellectual property and
thus may only provide SBOMs through restricted mechanisms and potentially under
a nondisclosure agreement (NDA).

Software Transparency Control 01
Control ST-01: Generate a software bill of materials (SBOM) for every production
release of software.

SBOM Formats
There are three main SBOM formats, as shown in Table 8-1: CycloneDX, Software
Package Data Exchange (SPDX®), and a third format that does not have the popular‐
ity of the first two, Software Identification (SWID).11 CycloneDX and SPDX are simi‐
lar in nature and updated frequently to stay in sync with the quickly evolving SBOM
use cases. The three SBOM formats are machine-readable JavaScript Object Notation
(JSON) files, but since SBOM ingestion tools are not commonplace, there are still
human-readable SBOMS in Adobe Portable Document Format (PDF), Microsoft
Excel Binary File Format (XLS), or comma-separated values (CSV) format.

Table 8-1. SBOM file formats

Format Origins Description

CycloneDXa OWASP community Focuses on automation, adoption, and enhancement of SBOMs within
build pipelines. Frequently updated.

SPDXb Linux Foundation and ISO/IEC
5962:2021

ISO/IEC 5962:2021 - Information technology SPDX® Specification
V2.2.1 focuses on ingestion in development workflows and corporate
compliance. Frequently updated.

SWIDc ISO/IEC 19770-2:2015 Designed for software inventory and entitlement management.
Rarely updated.

a CycloneDX, accessed June 25, 2023.
b “ISO/IEC 5962:2021”, ISO Webstore, accessed January 19, 2024.
c “ISO/IEC 19770-2:2015”, ANSI Webstore, accessed December 12, 2023.

Software Bill of Materials (SBOM) | 133

https://cyclonedx.org
https://www.iso.org/standard/81870.html
https://webstore.ansi.org/standards/iso/isoiec197702015

Although not a statistical survey, when I query organizations as to which standard
they have adopted, it appears to be divided equally between CycloneDX and SPDX.
However, since the SBOM formats are digital, it is easier for tool vendors to maintain
compatibility with both formats. It is too early to determine if one of them will
become a leading format or if they will both remain equally distributed.

The example SBOM graph, shown previously in Figure 8-3, can be viewed online
within the SwiftBOM tool.12 SwiftBOM, a simple SBOM generator created for the
SBOM healthcare proof-of-concept working group, includes samples of CycloneDX,
SPDX, and SWID. The SwiftBOM samples show some of the various elements that I
describe in “SBOM Elements” on page 134.

SBOM Elements
The NTIA Framing Working Group released a set of elements (or attributes) to
include in SBOMs, as shown in Table 8-2.13 Although the SPDX and CycloneDX
include these elements and more, the US government instructed NTIA to release a
minimum set of elements necessary for any SBOMs that are to be provided to US
government agencies.14 For a current list of elements supported in the SPDX or
CycloneDX formats—which far surpass the NTIA minimum elements or the framing
document elements—refer to that format’s specific documentation.

Table 8-2. SBOM attributesa

Attributes Description NTIA minimum
element

Author of SBOM data Name of the entity that creates the SBOM data for this component. This does not
have to be the software component publisher.

Yes

Timestamp Record of the date and time of the SBOM data assembly. Although not specified,
an international date and time format (YYYY-MM-DDThh:mm:ss) is recommended
to avoid confusion between MM-DD and DD-MM and has T as the delimiter (i.e.,
2025-11-24T14:55:39 for November 24, 2025, at 2:55:39 p.m. UTC).

Yes

Lifecycle phase Stage (source, build, or postbuild) where the SBOM was captured. No
Supplier name Name of an entity that creates, defines, and identifies components. Usually this is

the software publisher, manufacturer, vendor, developer, integrator, maintainer,
or provider.

Yes

Component name Designation assigned to a unit of software defined by the original supplier.
Examples of components include a software product, a device, a library, or a
single file.

Yes

Version of the
component

Identifier used by the supplier to specify a change in software from a previously
identified version. This can be any format since it is unique to the supplier, but
semantic versioning (major.minor.patch) is recommended.

Yes

134 | Chapter 8: Software Transparency

http://major.minor.patch

Attributes Description NTIA minimum
element

Component hash Unique identifier for a software component, the compiled binary form of that
component, or a collection of components. Due to the uncertain nature of the
hash being represented, and because some SBOM generation tools may not have
direct access to the underlying component, this attribute is not required in the
NTIA minimum elements.

No

License information License information for open source and commercial libraries is an important
element for compliance. Although not required in NTIA’s minimum element, it is
commonly included in SBOMs.

No

Other unique
identifiers

Other attributes used to identify a component or serve as a lookup key for
relevant databases. Examples of commonly used unique identifiers are Common
Platform Enumeration (CPE), SWID tags, and Package Uniform Resource
Locators (PURL).b

Yes

Dependency
relationship

Characterizes the relationship that an upstream component n–1 is included in
software n. A transitive dependency is when component n–2, which is a
component of n–1, is associated with software n—essentially, dependencies of
dependencies. At a minimum, all top-level dependencies (n–1s) must contain
enough detail to identify transitive dependencies. For example, the Android
operating system is a modified version of the Linux kernel.

Yes

Other dependency
relationships

Some SBOM standards capture additional dependency relationships, such as
derivation. Derivation is when a component has had modifications from the
original version of a component. This may occur when code is removed from, or
added to, the original component. Other dependencies could be dynamic
dependencies or third-party services, which load components when called by
the application.

No

a The attribute names are the ones defined in the NTIA minimum elements, which differ slightly from the names in the
framing document.
b See “National Vulnerability Database—Official Common Platform Enumeration (CPE) Dictionary”, NIST, accessed June 25,
2023; and “package-url/purl-spec”, GitHub, accessed June 25, 2023.

SBOM Limitations
SBOMs aren’t a perfect solution, nor do they solve all problems, and so I will describe
some limitations that exist when using SBOMs to provide software transparency. At
some point the tools, technologies, and standards may be able to resolve or reduce the
limitations noted in the following list:

Software naming/product naming
A single software product is known by different names in different ecosystems,
and there is no single name that will work everywhere or single source of truth
for that software. For example, if a company acquires another company, the soft‐
ware may be rebranded with a new name.

Software Bill of Materials (SBOM) | 135

https://nvd.nist.gov/products/cpe
https://github.com/package-url/purl-spec

Accurate SBOMs
Depending on how and when the SBOM was created, the SBOM may be missing
library references, especially proprietary or commercial libraries. This can occur
if a software composition analysis (SCA) tool has reverse engineered the software
binary. SCA tools also may incorrectly identify software libraries if there were
portions of a library used, but the existing code is maintained by the software
publisher. For example, if a portion of code was copied and pasted from an open
source library, the SCA tool may recognize it even if the organization is fully
maintaining any defects in the source code.

Backporting patches
Backporting is when a software update or patch is taken from a recent software
version and applied to an earlier version of the same software. This can be used
to address security flaws in older versions of the software that are still supported
by the publisher. Backporting is useful for IoT and OT firmware products where
hardware is specifically developed to support certain software libraries or func‐
tions. For example, earlier versions of the OpenSSL open source library could be
maintained for backward compatibility and interoperability with other products.
A manufacturer may then choose to backport the latest OpenSSL security patch
into a previous version of OpenSSL within the firmware.

SBOMs for operations
Although there are a large number of SBOM generation tools, at the time of writ‐
ing, there are limited technologies to ingest an SBOM and use it for operational
functions. There are SBOM readers, such as the open source Dependency Track
tool, which displays software dependencies to identify potential vulnerabilities.
SBOM ingestion capabilities will also be beneficial to configuration management
databases (CMDBs); security information and event management (SIEM) tools;
security orchestration, automation, and response (SOAR) tools; security opera‐
tion centers (SOCs); and vulnerability management tools and processes. Vulnera‐
bility management use cases are limited, however, unless VEX information is
included to confirm or deny the impact from a vulnerability.

SBOMs matching IT asset inventory
Each SBOM is unique to a software version. Over the course of a product lifecy‐
cle, there may be dozens or hundreds of software versions and SBOMs. Unless
the IT asset inventory has a record of the installed software, embedded software,
or firmware, it is not possible to match the correct SBOM with the IT asset. For
example, an IP-connected video surveillance camera may be running version 5 of
its firmware, but the current version and new SBOM is for version 9. In that
time, software libraries and vulnerabilities may have been patched. A false sense
of security can happen if the SBOM for version 5 is not available.

136 | Chapter 8: Software Transparency

Additional Bill of Materials (BOMs)
Besides SBOMs, there are additional bills of materials (BOMs) that can provide trans‐
parency to software choosers and operators. The BOMs in the following list help
organizations further illuminate supply chains:

Software as a service BOM (SaaSBOM)
A SaaSBOM is a logical representation of the system, services, dependency on
other services, directional flow of data, data classifications, endpoint URLs, and,
optionally, the software components for each service.

Operational BOM (OBOM)
An operational bill of materials decouples the dynamic information, such as run‐
time environments, configurations, and additional dependencies from the
SBOM.

Hardware BOM (HBOM)
Providing transparency for a connectible, IoT, Industrial IoT, or OT device
would include a hardware bill of materials that allows purchasers and operators
to evaluate and mitigate risks in the supply chain. An HBOM identifies the fin‐
ished product information, component parts, and production details, which
should include the names and locations of suppliers, manufacturers, and
assembly.15

Artificial intelligence BOM (AI-BOM) and machine learning BOM (ML-BOM)
The AI-BOMs and ML-BOMs provide transparency into the machine learning
models and datasets, as well as software components and algorithms.

Cryptography BOM (CBOM)
The CBOM provides an object model to describe cryptography assets and their
dependencies.16

Vulnerability Disclosures
A significant part of software transparency is the disclosure of vulnerabilities. Vulner‐
abilities may exist in open source, commercial components, or an organization’s pro‐
prietary code, but sometimes the disclosure is not voluntary. In other words, the
disclosure might be announced by a third party such as a government agency or
research firm. However, if the third party coordinates with the software publisher or
manufacturer before announcing the vulnerability, this is known as “responsible dis‐
closure.” For more information on creating vulnerability disclosures, refer to the UK’s
“Vulnerability Disclosure Toolkit” published by the UK National Cyber Security Cen‐
tre (NCSC).17 The toolkit, based on the international standard “ISO/IEC 29147:2018
Vulnerability Disclosure,” includes an example vulnerability disclosure policy.18

Vulnerability Disclosures | 137

When an organization discloses vulnerabilities, it is usually in the form of a CVE
(Common Vulnerabilities and Exposures) record, or through various methods such
as release notes, security bulletins, the common security advisory framework (CSAF),
vulnerability disclosure reports (VDRs), or vulnerability exploitability exchange
(VEX) records. These multiple approaches and formats for disclosing vulnerabilities
are described as follows:

CVE record
A list of vulnerability entries in a database, such as the US National Vulnerability
Database (NVD), each containing a unique identification number, a description,
and at least one publicly known reference.

Release notes
Usually a software publisher or manufacturer distributes a document, known as
release notes, with each version. The release notes contain a list of changes and
may reference security patches or fixes contained in the release. Some organiza‐
tions include low and medium security fixes in the release notes only rather than
generating a CVE record and potentially a security disclosure.

Security bulletins or notices
An organization may choose to release a human-readable document (known as a
security bulletin, disclosure, advisory, or notice). This document typically con‐
tains a list of CVEs, affected products, and mitigations, which can include links
to patches or updates.

CSAF document
A documented standard to disclose vulnerabilities in a machine-readable format,
allowing suppliers to automate their vulnerability disclosures.19 The CSAF file
generally includes the publisher, tracking information, and a list of products and
vulnerabilities. CSAF version 2.0 added support for VEX.

Vulnerability Disclosure Report (VDR)
An attestation of all vulnerabilities affecting a product or its dependencies, along
with an analysis of the impact. It should include plans to address the vulnerabili‐
ties and be signed with a trusted, verifiable, private key. For a detailed explana‐
tion of VDR, refer to Richard Brooks’s article “What Is a NIST SBOM
Vulnerability Disclosure Report (VDR).”20

VEX record
A security advisory to state all the vulnerabilities not affecting a product, product
family, or organization. It also can state which vulnerabilities do affect a product,
if there is an investigation in progress, or what plans exist to address the vulnera‐
bility. The VEX should be signed with a trusted, verifiable, private key. For a
detailed explanation showing the key differences between a VDR and VEX, refer

138 | Chapter 8: Software Transparency

to Steve Springett’s article “Vulnerability and Exploitability Transparency—VDR
& VEX.”21

Software Transparency Control 02
Control ST-02: Establish a vulnerability disclosure process and publish vulnerability
information based on the organization’s disclosure criteria.

Additional Transparency Approaches
In addition to SBOMs and vulnerability disclosures, there are other approaches to
demonstrating software transparency. These frameworks, methods, and artifacts are
all working toward a similar goal of providing the end customer with information
they feel is needed to assess risk in their organizations. Since software transparency is
a relatively recent requirement from customers, transparency approaches are still
evolving and thus may have changed after this book was published.

US CISA Secure Software Development Attestation Common Form
In accordance with US Executive Order 14028, the US Cybersecurity & Infrastructure
Security Agency (CISA) released the Secure Software Development Attestation Com‐
mon Form for any organization that intends to sell software (including firmware or
cloud products) to the US government.22 This form requires organizations to self-
attest—that is, to make a formal and legal statement—that the product, products, or
company were consistent with the following practices:

• The software is developed and built in secure environments.
• The software producer has made a good-faith effort to maintain trusted source

code supply chains.
• The software producer maintains provenance for internal and third-party code

incorporated into the software.
• The software producer employs automated tools or comparable processes that

check for security vulnerabilities.

Once this draft form is finalized, the US government and many other organizations, even
if they are not government agencies, will adopt this form and language to assess suppliers
on secure development practices. This will also be standard practice if the product is part
of another product, system, or service being sold to the US government.

Additional Transparency Approaches | 139

Supply Chain Integrity, Transparency, and Trust (SCITT)
Formed through the Internet Engineering Task Force (IETF), the Supply Chain Integ‐
rity, Transparency, and Trust (SCITT) Working Group has created an initial design
that allows implementers to build integrity and accountability into the software sup‐
ply chain.23 By creating a scalable, flexible, and decentralized architecture, software
publishers and manufacturers can produce evidence that allows users to validate the
integrity through a trusted mechanism. There are three core tenets for this trust
guarantee to work:

• Statements made about supply chain artifacts must be identifiable, authentic, and
nonrepudiable using a distributed public key infrastructure.

• Statements must be registered on a secure append-only log, so their provenance
and history can be independently and consistently audited.

• Software publishers and manufacturers can efficiently prove to any other party
the registration of their signed statements.

In 2023 the SCITT Working Group received approval from IETF to develop the
architecture and standardize the technical flows for providing information about a
software supply chain. I recommend reviewing the latest documents and architecture
in the IETF SCITT project since the architecture was still in design at the time this
book was published.

Digital Bill of Materials and Sharing Mechanisms
Originally designed by Unisys Corp, and now available as a Linux Foundation open
source project, the Digital Bill of Materials (DBoM) project enables API-based attes‐
tation sharing (e.g., deliverables such as SBOMs, HBOMS, and documentation)
among supply chain partners and customers.24

The DBoM solution is composed of open source software components that allow
sharing of attestations through a set of supported repositories such as databases, pri‐
vate and permissioned distributed ledgers, or public blockchains.25 With DBoM, an
organization can set up private or specific broadcast channels between two or more
partners to share information between one or more DBoM nodes, as shown in
Figure 8-4.

140 | Chapter 8: Software Transparency

Figure 8-4. Artifacts are shareable between many partners

By establishing a DBoM node, an organization can provide specific channels for the
communication of artifacts and access to the repositories. These private or broadcast
channels will have certain access policies determined by the owner of the channel. As
seen in Figure 8-5, any type of artifact can be distributed through the channels, but
the most common for supply chain purposes are SBOMs, HBOMs, and vulnerability
information.

Figure 8-5. DBoM nodes and channels for sharing artifacts

Additional Transparency Approaches | 141

DBoM and other sharing (or exchanging) mechanisms are frequently discussed in
the SBOM community. There is no dominant mechanism at the time of publishing
this book, but several vendors have models for sharing SBOMs through private or
SaaS clouds. Other vendors and ISACs are focusing on niche repositories to store
SBOMs for specific industries. Some people would prefer a global SBOM storage
database, but until the naming problem mentioned earlier is resolved and organiza‐
tions accept that SBOMs are accessible by anyone, it is highly unlikely a global
repository will exist.

Graph of Understanding Artifact Composition (GUAC)
Graph of Understanding Artifact Composition (GUAC) is a free tool developed by
Google that can aggregate different sources of software security metadata into a graph
database.26 GUAC is more than an SBOM graph: querying this database can enable
risk and policy management as well as trustworthy intelligence about project depen‐
dencies, and it can identify critical libraries. The tool has four major areas of func‐
tionality, as shown in the following list and represented in Figure 8-6:

Collect
Connect to a variety of open, public, internal, or proprietary sources of software
security metadata.

Ingest
Import data on artifacts, projects, resources, vulnerabilities, repositories, and
even developers.

Collate
Assemble the data into a coherent graph of relationships.

Query
Query for metadata attached to, or related to, entities within the graph.

Figure 8-6. GUAC graph

142 | Chapter 8: Software Transparency

Querying for a given artifact may return any number of items, including provenance,
vulnerabilities, SBOMs, lifecycle events, and build chain data from the SLSA frame‐
work (as described in “Source Code Integrity” on page 81).

In-Toto Attestation
Although the SLSA framework, discussed in Chapter 5, is specifically designed to
provide a checklist of controls to improve integrity and prevent tampering, the prove‐
nance framework referenced by SLSA is the in-toto attestation framework. Using in-
toto attestation, an end user can verify the integrity, authenticity, and auditability of a
software product by providing transparency about the steps performed, who per‐
formed the steps, and in which order the steps were performed.27

The in-toto framework first requires the project owner to create a layout of the
mandatory steps for build and deployment. Then the build tasks are performed and
metadata concerning the tasks are recorded. Finally, the end user or policy engine
checks that the metadata matches the intended layout with a bit-by-bit comparison to
the final product reported by the last step in the supply chain. This allows the user to
verify if a step in the build or deployment process was not performed to specification
or was performed by someone else.

Software Transparency Controls 03–04
Control ST-03: Produce required transparency artifacts such as software attestations.

Control ST-04: Identify and utilize sharing mechanisms for software transparency
artifacts.

Software Provenance
As mentioned in Chapter 5 and according to NIST, software provenance is defined as
verifiable information of where, when, and how the software artifact was produced
and sometimes by whom. According to the North American Electric Reliability Cor‐
poration (NERC), knowing the heritage of components allows users to better identify
and defend against threats.28 Transparency information, such as provenance, may be
requested by organizations that want to purchase products and services. Any organi‐
zation, whether purchasing or selling products, may be required to prove the prove‐
nance of software, firmware, or hardware for regulatory reasons, or as a potential risk
vector stemming from adversarial countries. For example, the US has identified some
vendors that cannot be part of products, and their technologies cannot be used to
create or support products.

Additional Transparency Approaches | 143

Some software provenance information can be included in an SBOM, SCITT artifact,
or other transparency artifact. Organizations may require different provenance
elements, depending on the products or services required. The following list contains
some examples of provenance information requested by organizations:

• Development and testing tools and platforms
• Source code repository locations and access logs
• Logs of development and testing activities
• Build management tools, CI/CD tools, and access logs
• Production platforms and access logs
• Locations of developers, testers, and anyone with access to the source code and

platforms
• Data models used for generative AI

There is a challenge with depending on provenance for software transparency infor‐
mation. Considering there are trillions of lines of code globally, the percentage of
code that has some or all provenance information captured is extremely small. In sit‐
uations where some information is available, it is likely to be a small percentage of the
entire product or service.

Even with only a small percentage of information available, requests for provenance
instigate conversations about software origin and its relationship to trustworthiness.
In recent years, malicious actors have been increasingly targeting open source
projects and components in public repositories and systems. The provenance of these
systems may not exist or it may be false. Organizations need to carefully inspect any
open source, as identified in control SCBD-02 and SCBD-06 from Chapter 5, for any
hidden security risks.

Generative AI presents an additional challenge, as seen in the court case against Git‐
Hub, Microsoft, and OpenAI (which had not been settled at the time of this book’s
publication).29 In this legal case, a number of developers have alleged that source code
generated by AI did not identify the original source code and thus violated the open
source licenses for that code. As organizations begin to use generative AI to create
source code, they should capture all provenance details for future use cases, such as
transparency, regulatory, or legal artifacts.

Software Transparency Control 05
Control ST-05: Capture provenance information for software, firmware, and
hardware.

144 | Chapter 8: Software Transparency

Practices and Technology
Another aspect of software transparency is all the practices (processes, procedures,
policies, organization) and technology that contributed to the product, offers, and
services. Often in contracts and assessments, customers will require organizations to
provide details, and thus transparency, on these topics. Table 8-3 lists and describes
some of these common practices and technologies.

Table 8-3. Other information requested for software transparency

Practices Description Examples of practices and technology
Organizational
setup

Security personnel structure and responsibilities • Information security management policy
• Product security policy

Requirements Requirements that contributed to the product
or service

• ISA/IEC 62443-4-2 Technical Security
Requirements for IACS Components

• ISA/IEC 62443-3-3 System Security Requirements
and Security Levels

• ETSI EN 303 645 Cyber Security for Consumer
Internet of Things: Baseline Requirements

Change
management

Who or what has authority to make changes to
the product or service

• Product owner
• Patch management tool

Design Requirements and techniques that contributed
to the product or service

• Secure-by-design requirements
• Privacy-by-design requirements

Development Secure software development lifecycle
framework used for development

• NIST SP 800-218 SSDF
• ISA/IEC 62443-4-1 Secure Development Lifecycle

Threat modeling Details about the tools used and the model itself • Microsoft Threat Modeler
• Threat modeling summary report

Security testing When, where, and what types of tests
were performed

• Fuzz testing
• Penetration testing report
• Security testing summary report

Build and release
management

Process and tools used for compiling or
deploying the product or service

• Build management tools
• Cloud deployment tools

Operations Who performs and what tools are used • Managed service provider
• Cloud monitoring tools

Vulnerability
management

Framework used and what vulnerabilities exist
in the product or service

• ISO/IEC 30111 Vulnerability Handling Processes
• List of publicly disclosed vulnerabilities

Supplier
management

Process for selecting and assessing software and
hardware suppliers

• Supplier management policy
• MITRE System of Trust

These examples are just some of the artifacts that may be requested by organizations.
Many of the artifacts can be prepared ahead of time and provided in a transparency
package with the product or service during the procurement or delivery process.

Additional Transparency Approaches | 145

Software Transparency Control 06
Control ST-06: Prepare and provide transparency packages for requested software,
firmware, and hardware.

Summary
The time for transparency has come. Organizations need to prepare artifacts such as
SBOMs, policies, test reports, and attestations for review and assessment during the pro‐
curement cycle, and also provide ongoing information throughout the lifecycle of the
product or service. It may never be possible to have all the details and history of the soft‐
ware supply chain, but transparency helps build trust in the organization and the soft‐
ware. There are many more ways to build trust in the software supply chain, and those are
by understanding and assessing your suppliers, as I discuss in Chapter 9.

References
1 “Improving the Nation’s Cybersecurity”, Federal Register, May 17, 2021.

2 Consolidated Appropriations Act, 2023, HR 2617, 117th Cong. 2nd sess.

3 Chris Hughes and Tony Turner, Software Transparency: Supply Chain Security in
an Era of a Software-Driven Society (Wiley, 2023).

4 Enduring Security Framework, Securing the Software Supply Chain: Recommended
Practices for SBOM Consumption, November 2023.

5 “Vulnerability Exploitability eXchange (VEX)—Use Cases”, US Cybersecurity &
Infrastructure Security Agency, April 2022.

6 “Minimum Requirements for Vulnerability Exploitability eXchange (VEX)”, US
Cybersecurity & Infrastructure Security Agency, April 21, 2023.

7 “NTIA Software Component Transparency”, NTIA, April 28, 2021.

8 “Software Bill of Materials (SBOM)”, US Cybersecurity & Infrastructure Security
Agency, accessed December 12, 2023.

9 “Tool Center”, CycloneDX, accessed December 12, 2023, and “Tools”, SPDX,
accessed January 19, 2024.

10 Eliot Lear and Scott Rose, “RFC 9472: A YANG Data Model for Reporting Soft‐
ware Bills of Materials (SBOMs) and Vulnerability Information”, RFC Editor, October
2023.

146 | Chapter 8: Software Transparency

https://www.federalregister.gov/d/2021-10460
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf
https://media.defense.gov/2023/Nov/09/2003338086/-1/-1/0/SECURING%20THE%20SOFTWARE%20SUPPLY%20CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20SOFTWARE%20BILL%20OF%20MATERIALS%20CONSUMPTION.PDF
https://media.defense.gov/2023/Nov/09/2003338086/-1/-1/0/SECURING%20THE%20SOFTWARE%20SUPPLY%20CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20SOFTWARE%20BILL%20OF%20MATERIALS%20CONSUMPTION.PDF
https://www.cisa.gov/sites/default/files/2023-01/VEX_Use_Cases_Aprill2022.pdf
https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://ntia.gov/other-publication/ntia-software-component-transparency
https://www.cisa.gov/sbom
https://cyclonedx.org/tool-center
https://spdx.dev/use/tools
https://www.rfc-editor.org/rfc/rfc9472.html
https://www.rfc-editor.org/rfc/rfc9472.html

11 NTIA Multistakeholder Process on Software Component Transparency: Stand‐
ards and Formats Working Group, Survey of Existing SBOM Formats and Standards,
2021.

12 “SwiftBOM (5.2.7)—SBOM Generator for PoC and Demos”, Democert.org,
accessed December 12, 2023.

13 NTIA Multistakeholder Process on Software Component Transparency: Fram‐
ing Working Group, Framing Software Component Transparency: Establishing a Com‐
mon Software Bill of Materials (SBOM), October 21, 2021.

14 US Department of Commerce, The Minimum Elements for a Software Bill of
Materials (SBOM), July 12, 2021.

15 US Cybersecurity & Infrastructure Security Agency, A Hardware Bill of Materials
(HBOM) Framework for Supply Chain Risk Management, September 2023.

16 Basil Hess and Nicklas Koertge, “OWASP CycloneDX: The Missing Standard For
Describing Cryptography in Software”, OWASP, October 3, 2023.

17 “Vulnerability Disclosure Toolkit”, UK National Cyber Security Centre, Septem‐
ber 14, 2020.

18 “ISO/IEC 29147:2018 Vulnerability Disclosure”, ISO, accessed December 12,
2023.

19 “Common Security Advisory Framework (CSAF)”, Oasis CSAF TC, accessed
December 12, 2023.

20 Richard Brooks, “What Is a NIST SBOM Vulnerability Disclosure Report
(VDR)”, Energy Central, August 24, 2022.

21 Steve Springett, “Vulnerability and Exploitability Transparency—VDR & VEX”,
OWASP, February 7, 2023.

22 “Secure Software Development Attestation Form”, Cybersecurity and Infrastruc‐
ture Security Agency, accessed December 12, 2023.

23 “Supply Chain Integrity, Transparency, and Trust (SCITT)”, IETF Data Tracker,
December 12, 2023.

24 DBoM Technical Project, accessed December 12, 2023.

25 A distributed ledger is a database that is shared and synchronized across multi‐
ple sites, is accessible by multiple participants, and allows transactions to have public
witnesses. Participants can own an identical copy of it, and any changes or additions
made to the ledger are reflected and copied to all participants.

26 “Announcing GUAC, a Great Pairing with SLSA (and SBOM)!”, Google Security
Blog, October 20, 2022.

Summary | 147

https://ntia.gov/sites/default/files/publications/sbom_formats_survey-version-2021_0.pdf
https://democert.org/sbom
http://Democert.org
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.cisa.gov/sites/default/files/2023-09/A%20Hardware%20Bill%20of%20Materials%20Framework%20for%20Supply%20Chain%20Risk%20Management%20%28508%29.pdf
https://www.cisa.gov/sites/default/files/2023-09/A%20Hardware%20Bill%20of%20Materials%20Framework%20for%20Supply%20Chain%20Risk%20Management%20%28508%29.pdf
https://owasp.org/blog/2023/10/03/CycloneDX-Cryptography-CBOM
https://owasp.org/blog/2023/10/03/CycloneDX-Cryptography-CBOM
https://www.ncsc.gov.uk/information/vulnerability-disclosure-toolkit
https://www.iso.org/standard/72311.html
https://oasis-open.github.io/csaf-documentation
https://energycentral.com/c/pip/what-nist-sbom-vulnerability-disclosure-report-vdr
https://energycentral.com/c/pip/what-nist-sbom-vulnerability-disclosure-report-vdr
https://owasp.org/blog/2023/02/07/vdr-vex-comparison
https://www.cisa.gov/secure-software-attestation-form
https://datatracker.ietf.org/wg/scitt/documents
https://dbom.io
https://security.googleblog.com/2022/10/announcing-guac-great-pairing-with-slsa.html

27 in-toto.io, accessed December 12, 2023.

28 NERC, Security Guideline: Supply Chain Provenance, March 22, 2023.

29 GitHub Copilot Litigation, Joseph Saveri Law Firm, November 3, 2022.

148 | Chapter 8: Software Transparency

http://in-toto.io
https://www.nerc.com/comm/RSTC_Reliability_Guidelines/Security_Guideline-Supply%20Chain%20Provenance.pdf
https://githubcopilotlitigation.com

CHAPTER 9

Suppliers

Suppliers can introduce risks to you through the people, practices, code, and technol‐
ogies that they use to build their product or service. A single code library provided by
a supplier, for example, can introduce critical vulnerabilities into your organization,
products, or services. Your organization likely has a process for selecting suppliers,
which usually includes an evaluation of the supplier’s financial health, the quality of
the product it produces, and its ability to deliver the volumes you need. When
reviewing criteria for a potential supplier, cybersecurity should also be a weighted fac‐
tor in your overall evaluation. These supplier evaluations now assess the risk of cyber‐
security issues, data breaches, and regulatory compliance, or are used to meet
insurance requirements. The evaluations are important, but they may not address the
key risks for the supplier’s scope of products or services. For example, the cybersecur‐
ity posture of a supplier’s websites and attack surfaces does not necessarily mean that
the supplier uses a secure software development lifecycle process or monitors its
development environments.

Throughout this chapter, I use the term “supplier” to represent the direct supplier or
vendor who provides goods or services to your organization, which would make it a
“third-party” supplier. Each third-party supplier may have multiple suppliers itself,
making them your fourth-party suppliers. This continues upstream to the fifth party
all the way to the nth party. According to legal definitions, the first party is your com‐
pany and the second party is the end user or customer, where applicable. These
relationships are shown in Figure 9-1.

149

Figure 9-1. Customer, company, and supplier relationships

Third-party suppliers should have the same controls, assessments, and agreements
with their fourth-party suppliers, who should do the same, and so on up the supply
chain. Any upstream supplier or technology that creates, modifies, or has access to
source code represents an inherent risk in the software supply chain. The goal is to
manage and minimize the risks of third parties and beyond, even though you have
limited or no control over their processes, performance, and controls.

There are three main processes involved in software supplier risk management: cyber
assessments, cyber agreements, and supplier management. These processes can be
performed in parallel to your organization’s supplier management processes, inde‐
pendent from existing supplier management processes, and independent from each
other. For a current supplier with a cyber agreement in place, as an example, you can
implement the supplier management activities and wait until right before contract
renewal to conduct a supplier assessment.

This chapter will discuss the details and controls for the three main processes of cyber
assessments, cyber agreements, and supplier management. The controls in this chap‐
ter provide a specific focus on cybersecurity risk in the supplier software supply
chain. You can integrate and expand the software supply chain controls from this
chapter into your supplier evaluation process.

150 | Chapter 9: Suppliers

Cyber Assessments
There are many cyber risk management companies that provide tools and services for
supplier management and assessment. The tools monitor an organization’s digital
footprint, including DNS, insecure protocols, and so on, and the services provide
real-time monitoring, dashboards, and alerts when there are certain situations such
as a data breach. Primarily these services are only for the external-facing posture,
which may indicate a supplier’s level of IT hygiene but does not fully represent a sup‐
plier’s overall cybersecurity posture. In addition to, or in lieu of, these monitoring
tools, organizations may choose to perform cyber assessments to evaluate the security
posture for specific products or services. The cyber assessment results should provide
value into any of your decisions about suppliers, and if the cyber risks are above your
risk threshold, the supplier process should allow you to reject the supplier or escalate
the risk. A poor cyber performer is a liability and a cost to your organization—you
are either paying to enhance the security in advance of using the performer’s product
or services, or you take the cost burden once a cyber event has occurred.

Typically cyber assessments exist in the form of questionnaires developed by cyber
risk management companies, trade associations, regulatory groups, individual com‐
panies, or governments, such as the ones mentioned in the following list:

CISA ICT SCRM Task Force—Small Business template1

Designed for small businesses to assess information and communication
technology (ICT) hardware, software, and services.

CISA NRMC—Vendor Supply Chain Risk Management (SCRM) Template
Standardized template of questions for enhanced visibility and transparency.2

Enduring Security Framework—Supplier Artifacts and Checklist3

Located in Appendix D in the publication “Securing the Software Supply Chain:
Recommended Practices for Suppliers,” this document provides examples of
information to assess or questions to ask.

North American Transmission Forum (NATF) Supply Chain Security
Assessment Model4

One of the first publicly available supplier assessment models, the NATF’s Supply
Chain Security assessment model is directed toward suppliers in the energy
industry.

Idaho National Laboratory—Cyber Security Evaluation Tool (CSET)5

A desktop software tool for evaluating an organization’s security posture. It pro‐
vides a process to evaluate industrial control system (ICS) and information
technology (IT) network security practices.

Cyber Assessments | 151

Suppliers are very familiar with receiving cyber questionnaires. In these question‐
naires, you should ask the supplier to provide evidence to support the things it’s
claiming in the assessment. The level of transparency for evaluating cybersecurity
posture can be difficult to prove since suppliers consider many of the details confi‐
dential and require a nondisclosure agreement (NDA) to provide answers and evi‐
dence (e.g., their policies, internal processes, bills of materials, audit results, and
testing reports). Rather than providing evidence, suppliers may propose to show evi‐
dence only during review meetings. Before requesting evidence, you should carefully
consider whether your organization will benefit from reviewing the evidence and
whether you have the resources or capability to review and evaluate the evidence.
Later in this section, I will discuss areas to focus on (e.g., IT security, product/applica‐
tion security, secure development lifecycle) for questions and evidence used to
evaluate a supplier’s risk to the software supply chain.

Assessment Responses
One question that I am asked continuously is how to get suppliers to respond to
questionnaires and assessments. Unfortunately, there are very few ways to enforce
compliance with your supplier assessment process. Unless the supplier is already obli‐
gated by a contract, law, or regulation to provide answers, it may choose to ignore or
indefinitely delay the assessment. Open source software maintainers will probably not
be in the position to answer assessments, and some extremely large organizations
may only provide responses to strategic accounts, or they may refer you to a portal
that contains the information they feel is relevant to share. If an organization has a
policy where it does not respond to questionnaires, it may note that somewhere on its
website or open source project.

It is not unusual for assessment requests from smaller organizations to be ignored.
However, the following is a list of suggestions that may increase the response rate
from supplier organizations:

• Request escalation within the supplier’s sales organization.
• Ensure the assessment is being routed to the cybersecurity team or CISO rather

than staying with the supplier’s sales organization.
• Contact a cybersecurity team member or the CISO on a social networking site,

such as LinkedIn.
• Work with peer organizations and, by using a common template, send a joint

request to the supplier.
• Include your legal team in the request, or ask the team to make the request.

152 | Chapter 9: Suppliers

If you still do not have answers after using these various methods, you will need to
perform some research on your own, as described in “Research” on page 153, or use a
third-party service to collect intelligence on the organization. Once you have collec‐
ted and evaluated any available information, your organization will need to agree on
how much risk it is willing to accept if this supplier is used.

Research
The supplier selection process is generally led by purchasing, procurement, and
financial teams to qualify a supplier’s enterprise and financial risk. Carefully review
the existing supplier selection process in your organization and identify any gaps in
the due diligence with regards to security posture. In some cases, you may find the
supplier has populated its website with cybersecurity information such as the pro‐
cesses it follows and the certifications it has received. A good example of this is Cisco’s
Trust Portal, which contains audit reports such as SOC2 and FedRAMP, as well as
security testing information and questionnaire responses.6

To continue your due diligence, perform internet searches to identify any media
attention that the company may have received for data breaches, software vulnerabili‐
ties, or cyberattacks such as ransomware. This due diligence would include reviewing
the known vulnerabilities databases (US-based NIST NVD or China-based CNVD)
and the US-based CISA Known Exploited Vulnerabilities (KEV) Catalog for any
common vulnerabilities and exposures (CVEs) in the supplier’s product.7 CVEs are
not a true indicator of the company’s product quality but instead provide a view into
the supplier’s transparency and known exposures for future risk mitigations.

Supplier Controls 01–02
Control SP-01: Incorporate cybersecurity into the supplier selection and evaluation
processes.

Control SP-02: Research the supplier’s cybersecurity posture for risk and transparency.

IT Security Including Environmental Security
When performing an assessment for software supply chain security, there will always
be elements of IT security to keep in mind. The assessments must include the envi‐
ronment controls mentioned in Chapter 3 and verification of the controls for devel‐
oper systems, lab environments, build management systems, test environments,
production environments, and, when applicable, manufacturing environments. Even
cloud-first organizations and a cloud-based development infrastructure must main‐
tain IT controls for proper access management, role-based access control, logging
and monitoring, backups, disaster recovery, and business continuity.8 Multifactor

Cyber Assessments | 153

authentication, VPNs, and other IT controls are critical for retaining the confidential‐
ity, authenticity, and integrity of the supplier’s products and applications. Depending
on the risk of the product, application, or data, you should ask for the penetration test
results on the IT infrastructure used in the software development lifecycle. Most
organizations perform IT and application penetration testing, but they do not scope a
penetration test on the development environment infrastructure.

Supplier Control 03
Control SP-03: Request evidence of a supplier’s IT security controls specifically in
defense of software development systems, environments, and infrastructure.

Product/Application Security Organization
When receiving assessments, suppliers usually answer the cybersecurity organization
questions from an IT security perspective. Sometimes the assessments may be com‐
pleted by someone in the sales organization using preapproved cybersecurity
answers, but the answers may not address software supply chain risks for the product
or service. If you are making the investment to perform a supplier assessment, be sure
to ask in the questionnaire about the organization, identity, and role of the responder
to factor it into the evaluation.

Assessments for software supply chain security should always ask the supplier about
its product or application’s security organization (i.e., product security office or secu‐
rity engineering), which may be part of the CISO office or development organization.
The assessment should ask if there is an application security leader, such as a head of
application security or chief product security officer (CPSO), accountable for the
secure development processes, controls, and compliance.

For evidence, request organizational charts showing application security leaders,
security architects, and security testers. If the supplier does not have a product or
application security organization, the supplier should demonstrate resources within
the IT security or development teams who are accountable for secure development
practices, security testing capabilities, and formal cybersecurity review checkpoints
that examine product and application cyber risk.

I recommend that during and after the assessment process, you create and maintain a
relationship directly with the cybersecurity leaders in the supplier’s organization. By
establishing a relationship, you can discuss security posture improvements as peers,
and also have direct contacts in place should any concerns or incidents arise in the
supplier’s organization.

154 | Chapter 9: Suppliers

Supplier Control 04
Control SP-04: Evaluate technology leadership at the supplier and request evidence of
a supplier’s application security organizational structure and accountability. Create
relationships with cybersecurity leaders at critical suppliers.

Product Security Processes and Secure Development Lifecycle
When collecting assessment evidence, a supplier’s product and application security
processes should be documented in policies, procedures, reports, and dashboards.
This should include secure development, secure coding rules, secure testing require‐
ments, security features and requirements, penetration testing requirements, and
release management criteria, as well as vulnerability and patch management policies
and SLAs (service-level agreements). As covered in Chapter 4, the SDL process can be
a specific framework such as ISA/IEC 62443-4-1, NIST SSDF, ISO/IEC 27034, or
Microsoft SDL. Whichever process is followed, the company should have a docu‐
mented policy stating the baseline and the cyber criteria required for release. There
may be specific procedures and controls regarding which tools to use, what criteria is
allowable for decision making, and who approves the release based on cyber risk. The
software security process should also have some criteria for measurement and moni‐
toring of an application or product’s security posture.

It is common for suppliers, especially smaller companies or startups, to have a blend
of secure development practices rather than follow a specific process framework. Be
cautious when the response to a request for secure development evidence is an SOC 2
report and ISO 27001 certification since those processes and reports do not assess
secure development practices. An SOC 2 report demonstrates the security and
reporting controls for privacy, confidentiality, security, processing integrity, and avail‐
ability. An ISO 27001 certification covers security policies, asset management, physi‐
cal and environmental security, access control, incident management, and regulatory
compliance. That evidence is valuable for other cybersecurity risks and may be
required for cybersecurity compliance or regulation requirements, but it is not appli‐
cable to assess the security posture of secure development practices.

Supplier Control 05
Control SP-05: Request evidence of a supplier’s secure development practices,
frameworks, and controls.

Cyber Assessments | 155

Training
In security questionnaires, there is usually a question that asks if cybersecurity aware‐
ness training, which usually covers phishing and social engineering risks, is required
for all employees. In a software supply chain security assessment, there should also be
specific questions in regard to how the supplier trains its various teams such as IT,
development, cloud operations, etc. As described in Chapter 11, these trainings
should specifically address the secure development lifecycle process and also role-
based training for topics such as secure coding and security testing. Smaller compa‐
nies and startups should be held to the same training requirements as larger
companies since there is no difference in risk to the product or service you are pur‐
chasing. However, one question that is rarely asked is “Have the application security
teams completed the training before starting the project?” because there is little value
for the team to have secure development training after they’ve developed the entire
product or application.

Supplier Control 06
Control SP-06: Request evidence of a supplier’s training program for cybersecurity
awareness, secure development lifecycle processes, secure coding, and security test‐
ing, along with the policy for mandatory training prior to development.

Secure Development and Security Testing
During the development process, the supplier should utilize threat modeling, secure
coding techniques such as peer reviews, and secure coding analysis (SCA) tools to
evaluate code written by or included from open source and commercial vendors.
During assessments, you should request evidence of threat modeling and secure cod‐
ing practices that have been performed by the development team. Also request infor‐
mation as to which SCA tools are used and evidence that the tools have been utilized
during the build process.

Assessment evidence should include the practices, tools, and reports that prove secu‐
rity testing was performed during builds and before the deployment or release. Secu‐
rity testing practices should include validation of security feature requirements,
similar to how functional testing is done for other requirements. For example, there
should be test cases performed on data protection requirements and OWASP Top 10
risks such as Broken Access Control. In addition to testing against security features,
requirements, and risks, the supplier should provide evidence for other types of test‐
ing. As mentioned in Chapter 4, SAST and DAST tools provide effective use of secure
testing but should not be the only security testing performed on a product
or application.

156 | Chapter 9: Suppliers

Supplier Control 07
Control SP-07: Request evidence or a demonstration of a supplier’s secure develop‐
ment practices that include threat modeling, secure coding practices, static code
analysis, and security testing.

Build Management, DevSecOps, and Release Management
As we saw in the SolarWinds hack of 2020, when a threat actor inserted malicious
code into the software build process, build management practices are extremely
important for software supply chain security. As previously described in Chapter 5,
using a build integrity framework such as Google SLSA can provide specific controls
and proper build management practices. During assessments, you should request evi‐
dence for which build tools were used, who is allowed to perform builds and where,
how to confirm that code commits are valid before integration into a build or Dev‐
SecOps process flow, and the release management and approval practices associated
with all levels of change from small to significant architecture adjustments.

DevSecOps and release management evidence should include code management and
change management practices, software bills of materials (SBOMs), configuration
changes, and changes made to the build and release processes. Evidence should also
support that logs for tools and SIEM/SOAR systems have a log retention policy, that
the logs are connected to off-site log repositories, and that the SIEM/SOAR system
logs are inspected for unusual behavior and incidents.

Supplier Control 08
Control SP-08: Request evidence or a demonstration of a supplier’s build manage‐
ment, DevSecOps, and release management practices, including tools, reports, pro‐
cesses, access controls, approvals, and logs for tools and event management systems.

Scanning, Vulnerability Management, Patching, and SLAs
Third-party supplier assessments should always include questions and require evi‐
dence regarding scanning, vulnerability management, and patching. Frequent scan‐
ning of the source code, systems, environments, and networks must be conducted.
Evidence of those policies, practices, reports, and scanning logs should be provided to
you. Within the evidence, there should be a vulnerability disclosure policy and a vul‐
nerability management procedure that describes how the supplier receives vulnera‐
bility reports, how it manages vulnerabilities in a timely fashion, and how it discloses
vulnerabilities to customers and authorities.

Cyber Assessments | 157

Systems, environments, and applications must be patched to remediate any known
vulnerabilities. There should be an SLA and a policy in regard to patching critical
and high-risk vulnerabilities. Evidence of any internal SLAs or requirements should
be provided by the supplier.

Supplier Control 09
Control SP-09: Request evidence of a supplier’s scanning, vulnerability management,
and patching processes, including policies, procedures, reports, logs, and patching
service-level agreements.

Cloud Applications and Environments
For all cloud applications and environments used in the software supply chain, sup‐
pliers should provide evidence of management and hygiene, as discussed in Chap‐
ter 6. Evidence should include information about the appropriate people, processes,
and technologies associated with the cloud environment, not just the infrastructure
itself. For example, with regards to people and processes, suppliers must frequently
review administrator privileges and practices along with private key management
procedures. For technologies, suppliers should monitor their cloud providers and
perform frequent checks to ensure that the environment remains correctly configured
and secure by default.

Frequently, cloud suppliers introduce new tools or configuration options, which can
change the security posture of cloud applications and services. Annual testing of
cloud applications, configurations, and infrastructure must be performed by experi‐
enced penetration testers. Ask for evidence in the form of an AICPA SOC 2 Type 2
report or an ISO 27001 certification, which is not adequate for secure development
processes, as mentioned previously, but is very applicable for cloud infrastructure. As
described in Chapter 6, an SOC 2 Type 2 report is especially useful because it moni‐
tors the controls to safeguard customer data over a period of time for service com‐
mitments, requirements, and assurance.9

Supplier Control 10
Control SP-10: Request evidence of a supplier’s management practices and reports for
cloud infrastructure, access controls, keys, configurations, testing, responsibilities,
and service-level agreements.

158 | Chapter 9: Suppliers

Development Services
If the supplier is going to provide you with any software or firmware development
services, in addition to the secure development practices mentioned earlier in this
chapter, there should be assessment questions related to code quality. The assessment
will reveal if any adjustments may be required to the services or cyber agreements.
For example, you should clearly define the responsibilities for ongoing development,
testing, defect corrections, and vulnerability remediation.

Depending on where the software is used or sold, it may also be relevant to ask the
location of the developers and if background checks have been performed on person‐
nel, assuming that background checks are even allowed in that country. Evidence
should include access control policies, mandatory multifactor authentication,
SBOMs, and additional secure development practices, as mentioned in the previous
sections.

Supplier Control 11
Control SP-11: Request evidence of a supplier’s development services, including code
quality reports, test reports, and vulnerabilities. When applicable, request developer
information such as locations and evidence of background checks.

Manufacturing
Some suppliers may be providing third-party services such as flashing firmware or
assembling products. Manufacturing suppliers that have direct access to the product
should also be evaluated for risk of software or firmware compromise during the
transportation, manufacturing, or distribution processes. For example, if you provide
final firmware to a third-party supplier, that supplier should validate that the product
has not been compromised.

The manufacturing process should also include final integrity checks prior to cus‐
tomer delivery. Validation and testing of this process should be performed at mini‐
mum annually, and the evidence of those tests should be made available as part of the
assessment process. For further information regarding manufacturing security, refer
to Chapter 10.

Supplier Control 12
Control SP-12: Request evidence of a supplier’s access controls and integrity checks
for any personnel or process that has access to software or firmware.

Cyber Assessments | 159

Cyber Agreements, Contracts, and Addendums
Although assessments help you to gain an understanding of a supplier’s security pos‐
ture, cyber agreements hold the supplier accountable and responsible for its ongoing
security posture. Your cyber agreement should focus on the topics that were impor‐
tant to you in the assessment process. If you do not have a cyber agreement template,
ask your legal team to work with you in adapting one for your organization, or you
can reference an industry-specific template such as the one from the Edison Electric
Institute.10 When creating a cyber agreement, you will need to determine the mini‐
mum requirements and risks that you are willing to accept. Ideally you will have one
cyber agreement for all supplier types, regardless of whether the supplier provides
internal business applications or components to use in your commercial products.

Supplier agreements should include cyber conditions either in the main contract or
in addendums. A master services agreement (MSA) or cyber agreement should
include the following general cybersecurity items:

• IT security and management
• Data protection
• Requirements for data residency, defined as the physical or geographical location

of data
• SLAs, including requirements for business continuity and resiliency
• Definitions of breach and incidents
• Incident management and notification
• Right to audit and assessment, usually annually or triggered in the case of data

breaches, critical incidents, or critical vulnerabilities
• Safety and license obligations, including language for violations
• Cybersecurity insurance for breaches and other cyber incidents
• Indemnity, defined as compensation for loss or damage, or an exemption from

liability

Specifically for software supply chain security, your agreements should also require
the supplier to have the following elements:

• Secure development lifecycle
• Threat models
• Code analysis
• Security tests
• Penetration tests

160 | Chapter 9: Suppliers

• Software bills of materials (SBOMs)
• Vulnerability and patch management, including SLAs
• Vulnerability disclosure and notification
• Role-specific cybersecurity and application training

You can establish in the agreement what secure development lifecycle frameworks
should be followed, such as ISA/IEC 62443-4-1, NIST SSDF, ISO/IEC 27034, or
Microsoft SDL. You may also require the third party to have annual independent and
third-party assessments such as SOC 2 and penetration tests for the full scope of the
product. If you noted any deficiencies during the supplier assessment process, these
should be added to the cyber agreement. For example, if no security tests were per‐
formed, then a condition could be made that a third-party company should conduct a
penetration test and provide the results along with the remediations performed by the
supplier.

A critical component within a cyber agreement includes the management of vulnera‐
bilities and patches, along with the SLAs for that management. Usually, an MSA has
some comments regarding software updates for new features or software defects, but
vulnerability management, as well as the warranty and liability concerns in regard to
vulnerability remediation, are often not addressed. For any on-premises software, IoT
device, or operational technology (OT) device, the manufacturer should be providing
updates and enhancements to the software for known vulnerabilities. In the situation
where you are purchasing products through a value-added reseller (VAR), you may
not have the ability in the reseller contracts to require vulnerability or patch notifica‐
tions from the original manufacturer. In those cases, you should follow your organi‐
zation’s patch management policy to monitor the manufacturer for critical and high-
risk vulnerabilities in the platforms, devices, and software.

Cyber agreements generally include an SLA for notification and remediation of criti‐
cal and high-risk vulnerabilities. For fixes that are not available within the agreed
timeline, contract language should state that notifications must be provided within
the same SLA timelines. The industry standard is 30 days for critical vulnerabilities
and 90 days for high-risk vulnerabilities, but medium and low vulnerabilities are not
usually mentioned in the cyber agreement since they are rarely exploitable and thus
are usually fixed in a future software update. Remediations in cloud and mobile appli‐
cations can happen quickly, but for IoT and OT devices, there will be extensive test‐
ing required to ensure that hardware compatibility, backward compatibility,
interoperability, and safety have been taken into consideration. In some cases, due to
hardware dependencies or end-of-life components, patching may not be feasible and
the device manufacturer can only recommend mitigations and compensating con‐
trols. SLAs should also account for longer timelines when vulnerabilities exist in the
supplier’s third-party components. For example, if a fourth-party library of chip

Cyber Agreements, Contracts, and Addendums | 161

firmware has a vulnerability, the supplier must wait until the fourth party makes the
correction and releases it to the supplier.

Usually patch management may not be described in detail within a cyber agreement,
but when over-the-air (OTA) updates or auto-updates are required, there should be
specific language regarding downtime during the patching process. The language
should specify that updates must be tested to prevent unexpected downtime while the
software is being actively used, since downtime could result in safety issues or loss of
business revenue.

The topic I see most often missed in an agreement is the software termination process
and the cyber responsibilities of the supplier upon termination. If you continue to use
a product or service after the agreement has expired or been terminated, security vul‐
nerabilities may still place your organization at risk. Or if you’ve purchased commer‐
cial code libraries and the agreement does not allow for use after termination, the
code may need to be removed from your product or application, leaving limited
options for replacements.

In the agreement, you need to define what will happen if either party could not or
would not continue the relationship. In some cases, a termination clause may include
the cost for continuing support or updates. A termination clause may also require the
supplier to keep code in escrow in the event of the supplier closing its business. Ter‐
mination clauses should consider all areas of business continuity, business resilience,
and lifecycle management.

If the event that a supplier cannot agree to the conditions stated in the agreement,
then it is possible that its cybersecurity practices are not mature and you will need to
invest in compensating controls up to and including the selection of another vendor.

Supplier Control 13
Control SP-13: Incorporate cyber agreements into the supplier contracting process
that include cyber risk and minimum security standards according to the purchasing
organization’s policies.

Ongoing Supplier Management
A supplier’s security posture may change over time. One would hope that the security
posture continuously improves, but there are situations where the security posture
may decline due to reasons such as supplier organizational realignment. To maintain
competitiveness and innovation, supplier management should include the evaluation
of other suppliers. However, there should be change management controls in place to
prevent switching suppliers only for cost savings.

162 | Chapter 9: Suppliers

I recommend having critical supplier reviews at least quarterly and monitoring the
vulnerability databases for any new disclosures that may not have been reported to
you directly by your suppliers. As mentioned earlier, a supplier cyber risk manage‐
ment service can review the external-facing security posture and provide some alert‐
ing if something is of noticeable concern. The following sections describe the
ongoing software supply chain management topics, which should include monitor‐
ing, supplier reviews, and the right to audit.

Supplier Control 14
Control SP-14: Incorporate cyber topics and monitoring into the existing supplier
management process. Monitoring and reviews should include vulnerabilities, data
breaches, and supply chain issues and may require an audit or reassessment.

Monitoring
Monitoring suppliers for health and vulnerabilities is common in the industry, but in
regard to software supply chain security, the monitoring needs to be more specific.
This should include monitoring of CVEs in the NVD or CNVD and monitoring for
any potential breaches or other software supply chain issues. You can also leverage
the SBOMs, which you requested in the agreement, for monitoring software compo‐
nents that could potentially create risk to your organization.

Suppliers may have cybersecurity pages or portals that you can monitor and register
to be notified of updates to software, products, and vulnerabilities. One such way to
monitor is through the common security advisor framework (CSAF) machine-
readable files, which list a product’s vulnerabilities. Ideally, these CSAF files would be
used by your risk management platforms and asset management tools for alerts.

Either on the dark web or even on social sites such as YouTube, there may be instruc‐
tions or videos on how to illegally access software and crack license keys. Some cyber
risk management services include monitoring of the dark web for discussions or data
in regard to suppliers or their products. This can include data such as customer
details, personal identifiable information (PII), credit card data, intellectual property,
and access to suppliers’ environments.

Supplier Reviews
Whether on a quarterly, biannual, or annual basis, a review of your critical suppliers
should be an important part of your third-party management program. Some critical
suppliers may be large organizations that choose not to participate in quarterly
updates with smaller organizations. In this case, monitoring activities, as mentioned
in the previous section, are more important than normal.

Ongoing Supplier Management | 163

As part of your regular supplier review, be sure to cover the topics that were included
in your cyber agreement. These would include vulnerability management, patch
management, and SLAs. Use these meetings to discuss vulnerabilities and how the
supplier managed certain events (i.e., Log4j or the latest critical vulnerability).

If you use a cyber risk monitoring service, you should discuss any changes you
observed in the supplier’s digital footprint. Take the opportunity to ask if there have
been any changes to its cybersecurity processes or organization. You can also use this
review time to inform the supplier of potential requests (either your own or your cus‐
tomers') if you have them. For example, if you need a software bill of materials or
“country of origin” information, these meetings provide a direct opportunity for you
to collect information on the supplier’s software supply chain security.

Right to Audit and Assess
Although many suppliers request to remove the “right to audit” or assessments from
their contracts, this is an extremely important part of the supplier management pro‐
cess for software security. At a minimum, you should work with the supplier to allow
audits for incidents containing your data. The audit costs should be paid for by your
organization and usually are stipulated to have a mutually agreed-upon third party to
perform the services. However, a supplier will often proactively hire a third-party
auditor for any breach that has received media attention.

When there is a publicly known incident, data breach, or critical vulnerability, a sup‐
plier may document information on its website for its customers and submit reports
to government authorities if required by law. This could be through security notifica‐
tions, security bulletins, blog articles, or filings with government agencies or regula‐
tors. For example, after the incident on the Orion platform, SolarWinds wrote blog
articles and emails on mitigations, platform updates, and how it updated its build
management practices. This level of disclosure is higher than what is normally pro‐
vided by companies after an incident or breach.

Summary
This chapter discussed the details and controls for cyber assessments, cyber agree‐
ments, and supplier management. To start with, cyber assessments provide you with
supplier responses and evidence to understand the supplier’s security posture and
potential cyber risks. Next, cyber agreements provide a common understanding on
key topics including vulnerability, patch, and incident management. Lastly, the sup‐
plier security process requires management and monitoring to ensure the supplier’s
software supply chain is secure. In Chapter 10, I will discuss the software security
risks seen within the manufacturing supply chain, which includes the significant
dependencies on suppliers.

164 | Chapter 9: Suppliers

References
1 “Operationalizing Vendor SCRM Template for SMBs Spreadsheet”, CISA, Octo‐
ber 26, 2021.

2 US Cybersecurity & Infrastructure Security Agency (CISA) | National Risk Man‐
agement Center, Vendor Supply Chain Risk Management (SCRM) Template, April
2021.

3 Enduring Security Framework, Securing the Software Supply Chain: Recommended
Practices Guide for Suppliers, September 2022.

4 “NATF: Promote Excellence in the Reliable Operation of the Electric Transmis‐
sion System”, North American Transmission Forum, accessed December 12, 2023.

5 “Downloading and Installing CSET”, US Cybersecurity & Infrastructure Security
Agency, accessed December 16, 2023.

6 “Trust Portal”, Cisco, accessed December 12, 2023.

7 See “National Vulnerability Database”, NIST, accessed December 12, 2023; China
National Vulnerability Database, accessed December 12, 2023; and “Known Exploited
Vulnerabilities Catalog”, CISA, accessed December 12, 2023.

8 An approach where organizations prioritize cloud applications, platforms, envi‐
ronments, and infrastructure over physical, on-premises, or hybrid models.

9 “A Guide to Understanding SOC 2 Reports”, ERMProtect, accessed December 12,
2023.

10 Edison Electric Institute, Model Procurement Contract Language Addressing
Cybersecurity Supply Chain Risk, October 2022.

Summary | 165

https://www.cisa.gov/resources-tools/resources/operationalizing-vendor-scrm-template-smbs
https://www.cisa.gov/sites/default/files/publications/ICTSCRMTF_Vendor-SCRM-Template_508.pdf
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://www.natf.net/industry-initiatives/supply-chain-industry-coordination
https://www.natf.net/industry-initiatives/supply-chain-industry-coordination
https://www.cisa.gov/downloading-and-installing-cset
https://trustportal.cisco.com/c/r/ctp/home.html
https://nvd.nist.gov
https://www.cnvd.org.cn
https://www.cnvd.org.cn
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://ermprotect.com/blog/how-soc-2-reports-safeguard-data-and-elevate-customer-confidence
https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Model--Procurement-Contract.pdf
https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Model--Procurement-Contract.pdf

CHAPTER 10

Manufacturing and Device Security

According to the World Economic Forum, the manufacturing sector has become one
of the most targeted sectors for cyberattacks.1 Usually, we attribute software supply
chain security risk to something within the software development lifecycle, but the
risk may exist in a compromised chip, component, or product through connectable
IT, IoT, Industrial IoT (IIoT), or operational technology (OT) installed in your infra‐
structure. But even if you don’t have a manufacturing program in your organization,
risks can be introduced by your suppliers’ manufacturing processes. This chapter will
help you understand the overall risks in supply chain security for the products your
organization purchases or produces.

When you consider all the physical and digital components, along with the processes
used to build a device, there are hundreds, and potentially thousands, of opportuni‐
ties for compromise. Each physical device, such as a laptop, usually has firmware,
embedded software, and hardware components (e.g., motherboard, laptop screen). A
printed circuit board assembly (PCBA), such as the one pictured in Figure 10-1, may
have a dozen integrated circuit (IC) components, or chips, that support operation of
the device, and many of them contain embedded code libraries at the time of
purchase.2

The logic on these ICs can include cybersecurity flaws or intentional compromises
from upstream suppliers, and they can result in breaches that are very difficult to
detect and prevent. The following sections discuss the risks within the manufacturing
process for ICs and devices, as well as ways to safeguard manufactured products.

167

Figure 10-1. Printed circuit board assembly

Suppliers and Manufacturing Security
As you have learned throughout Chapter 9, risks can originate from any supplier. A
single error or intentional compromise in a device can lead to disastrous conse‐
quences, resulting in safety issues, data breaches, or product recalls. To limit the risk
of a supply chain compromise, every product should undergo a thorough supply
chain assessment and verification process of the activities described in the following
list:

• Designing, developing, and testing the hardware and software components
• Operating manufacturing tools and processes
• Receiving supplier goods
• Examining integrated circuits, chips, and modules
• Installing firmware (also known as flashing) on components or devices
• Testing the assembly of printed circuit boards and the device
• Warehousing, shipping, and transporting the manufactured product

The supplier is not alone in the creation of the product. As shown in Figure 10-2,
suppliers may also have participated in product design and creation as an original
design manufacturer (ODM); they may private label an existing product; they may
act in the role of electronic manufacturing service (EMS); or they may perform con‐
tract manufacturing (CM), where they design, test, manufacture, and repair products.

168 | Chapter 10: Manufacturing and Device Security

Figure 10-2. Manufacturing relationships

When you are evaluating manufacturers, you should consider what cybersecurity
knowledge, experience, and certifications they have in their organizational and man‐
ufacturing processes and locations. The manufacturer should have a strong IT cyber‐
security and data protection posture by following standards such as the ISO 2700x
information security, cybersecurity, and privacy protection standards, along with
ISA/IEC 62443 industrial automation and control system standards. If the manufac‐
turer conforms to the NIST Cybersecurity Framework, it should also implement the
adjunct publication, NIST IR 8183, Cybersecurity Framework Manufacturing Profile,
within its organization.3

Manufacturing and Device Security Control 01
Control MDS-01: Validate that manufactured devices were designed, developed, man‐
ufactured, tested, and shipped using information security, cybersecurity, and data
security best practices.

Suppliers and Manufacturing Security | 169

Equipment, Systems, and Network Security Configurations
By following information security and data protection standards, the manufacturer
should have secured its digital and physical infrastructure using policies, processes,
procedures, and technologies such as defense-in-depth to keep malicious actors from
infiltrating its environments. As described in Control IS-10 from Chapter 3, the man‐
ufacturing and supply chain environments must be inventoried and monitored for
threats. Manufacturing environments have a number of unique devices and systems,
as shown in Figure 10-3, that also need to be managed similar to typical IT assets.
The assets in manufacturing often include manufacturing execution systems (MES),
human machine interfaces (HMIs), programmable logic controllers (PLCs), and OT,
IT, and IIoT products. The assets should be deployed using secure configurations,
integrations, and best practices, paying special attention to securing the communica‐
tion protocols, which may not be encrypted in legacy devices.

IT security is just as important in manufacturing environments as it is in corporate
environments. The network strategy should include segmentation and technology
controls to secure and, where applicable, separate the corporate systems from the
manufacturing systems. Manufacturing environments should also implement addi‐
tional controls and zero-trust strategies on systems and equipment, such as disabling
USB storage, adding tamper detection on equipment, and incorporating patches and
updates into the manufacturing maintenance schedules. However, the threat land‐
scape for firmware attacks is quickly increasing, and thus constant attention should
be given to internet-facing devices and systems.4

To further secure the manufacturing environment, wireless capabilities should be set
to allow equipment such as autonomous robots, barcode scanners, and radio fre‐
quency identification (RFID) readers to operate, but the controls should prevent cell
phones or nonapproved devices from accessing the network. Along with general IT
management technologies, the manufacturer should also leverage tools specifically
designed to secure and monitor OT, IoT, and IIoT devices within the plant.

170 | Chapter 10: Manufacturing and Device Security

Figure 10-3. Manufacturing line example

Suppliers and Manufacturing Security | 171

Physical Security
Manufacturing involves many people, systems, and processes, as shown previously in
Figure 10-3. Physical security controls ensure that only approved personnel have
access to manufacturing sites, production floors, warehouses, distribution centers,
and any other physical locations where supporting processes are performed. Unap‐
proved persons pose a significant threat to supply chain security if they have physical
access to the equipment, systems, and networks within a location.

Manufacturers should have detailed policies and procedures for physical security that
must contain the instructions employees, contractors, and visitors are required to fol‐
low. This should include, for example, a policy that does not allow visitors to be unac‐
companied in the manufacturing plant or in any company location. To stop or
prevent potential supply chain compromise and enhance the defense-in-depth strat‐
egy, everyone must be trained in the physical security procedures for that location.
Penetration testing of the physical controls should be performed at locations where
supply chain security can greatly impact a product or service.

Manufacturing and Device Security Control 02
Control MDS-02: Institute clear policies and procedures for access to secured facili‐
ties. Train all personnel on the physical controls and procedures. Maintain and test
physical security controls for the organization and locations.

Code, Software, and Firmware Integrity
A single device, whose manufacturing cycle is presented in Figure 10-4, will often be
produced by many organizations, people, and processes interacting with the code,
software, firmware, and components. With so many opportunities for compromise to
the software supply chain, it’s necessary for all parties to have control points and tests
to verify code, software, or firmware integrity throughout the entire product lifecycle,
and to also include counterfeit checks for each of the physical components.

According to the research paper “Stealthy Dopant-Level Hardware Trojans: Extended
Version,” it is possible to manipulate components during the fabrication process
where the modifications would not be detected using the standard visual or integrity
checks.5 Such a compromise requires extensive skill and access, so I wouldn’t consider
manipulation during chip fabrication to be a major threat, but the best safeguard is to
perform integrity checks along the process. There are various ways to check for integ‐
rity throughout the process, such as comparing checksums, as mentioned in “Repeat‐
ability and Reproducibility” on page 86. The following sections provide additional
guidance on validating integrity along the manufacturing process.

172 | Chapter 10: Manufacturing and Device Security

Figure 10-4. Many opportunities for compromise

Tests for Integrity
A detailed hardware bill of materials (HBOM) should list all components but also
include suppliers, fabricators, manufacturers, and assemblers who have provided
materials and components and performed activities toward the creation of the physi‐
cal product. For each company identified in the HBOM, it should have performed
quality and integrity checks during each transition between companies and through
each step of the process. As an example, the logistics actions represented by the
arrows in Figure 10-4 introduce risk when information or components are shipped
digitally or physically.

Using the information provided in a software bill of materials (SBOM), suppliers and
customers should always cryptographically authenticate any code received from
another party, including internal code transfers between departments and work‐
groups. Similar to quality checks, integrity testing procedures should evaluate com‐
ponents or devices from each developer, fabricator, distributor, assembler, and
manufacturer. Additional tests, which are created specifically by the engineers who
design the manufacturing lines, should confirm the integrity of the components or
products through each step of manufacturing and assembly.

Code, Software, and Firmware Integrity | 173

Manufacturing and Device Security Control 03
Control MDS-03: Using the information available in the hardware bill of materials
(HBOM) and software bill of materials (SBOM), authenticate the components and
conduct integrity checks throughout the manufacturing process on any chips,
integrated circuits, components, firmware, and embedded software.

Counterfeits
Counterfeit chips are not a new problem, but with the chip shortages in 2020–2022,
there is an increase in fake parts and disreputable sellers. Fake chips can come in sev‐
eral forms: previously failed chips, recycled chips, counterfeit chips, and cloned chips.
Counterfeit chips can lead to failed quality tests, product recalls, and safety concerns.
Worst of all, they may also include vulnerable or malicious code that can result in
compromise of a product.

In order to reduce the likelihood of receiving counterfeit parts, an organization
should ensure in advance that the suppliers and manufacturers are reputable, trust‐
worthy, and preferably following a standard such as ISO 20243-1:2023, “Open Trus‐
ted Technology Provider Standard (O-TTPS),” as described in Chapter 2. Sometimes
a supplier may be a broker or reseller, thereby sourcing components or products from
other parties. This situation is highly susceptible to counterfeit or malicious compo‐
nents, so manufacturers should insist on anticounterfeit measures in the components
and packaging. These measures may be in the form of microscopic or chemical mark‐
ings, electrical or optical watermarks, or unique embedded cryptographic identities.

Components and products should always be sent within tamper-resistant packaging.
The supplier should provide, through a separate communications channel, what the
tamper-resistant packaging should look like and how to perform authentication and
integrity checks. To truly reduce counterfeits, however, the receiver must perform the
verification checks upon the receipt of goods to ensure the materials are authentic.
When materials are received, they must be carefully inspected to identify compro‐
mised components. This includes inspecting packaging, verifying serial numbers,
sampling components, and performing quality and integrity tests.

Manufacturing and Device Security Control 04
Control MDS-04: Verify that chips, components, and products are authentic before
using them in the manufacturing process.

174 | Chapter 10: Manufacturing and Device Security

Chain of Custody
Chain of custody, defined as the record of the people and organizations that possessed
an item, is an important concept for establishing the integrity of products and their
underlying components. Figure 10-4 demonstrates that many parties exist along the
supply chain, but there may not be a mechanism for tracking the provenance and
chain of custody, referred to as traceability, for each component from its origin to the
final product. As mentioned previously in Chapter 8, the country of origin, original
creator, or provenance may not be clearly evident, but the moment a component or
part appears in the supply chain, traceability can begin.

Traceability can exist in documents, in systems, and in the form of barcodes, QR
codes, RFID tags, and NFC (near-field communication) on products, packaging,
cases, and pallets. These tracking mechanisms, along with tamper-evident packaging,
seals, markings, or other methods, reduce the risk of tampering along the supply
chain. The chain of custody documentation, along with a description of the tamper-
evident mechanisms used for the product, can provide a level of assurance and
attestation, which may be required by the customer.

Manufacturing and Device Security Control 05
Control MDS-05: Trace the physical and digital parts, components, and products
through the supply chain to capture the chain of custody for the product.

Device Protection Measures
During the design, development, and manufacturing processes, organizations can
strengthen device security by implementing firmware and hardware-based security
protections such as digital signatures, secure hardware and software modules, and
device authentication. These protections, as described in the following sections, also
improve the security posture of the final product.

Manufacturing and Device Security Control 06
Control MDS-06: Implement hardware, firmware, and embedded software protection
measures within the device.

Device Protection Measures | 175

Firmware Public Key Infrastructure (PKI)
The foundation for device protection starts with digitally signing firmware and
embedded software using a firmware public key infrastructure (PKI) and is similar to
the software code signing described in Chapter 5. Without code signing, a malicious
actor can replace the embedded software or firmware images without any indication
that a change has occurred. In 2020, Eclypsium released research showing unsigned
firmware was on devices such as network adapters, graphics cards, USB devices, and
more.6 The company demonstrated that firmware in modern computers could easily
be replaced with a malicious version.

A number of IoT devices have unsigned firmware due to the architecture require‐
ments necessary for verifying signatures at boot time, or due to a lack of infrastruc‐
ture for firmware signing. Organizations should implement firmware signing
practices for the devices they produce and require all purchased products to have
signed firmware.

Hardware Root of Trust
Cryptographic hash comparison and digital code signature validation techniques, as
mentioned in Chapter 5, can verify integrity, but for IoT and OT devices, a hardware
root of trust is another method that should be leveraged by manufacturers. A hard‐
ware root of trust, of which one type is a hardware trusted platform module (TPM),
contains the keys used for cryptographic functions and enables a secure boot process.

A TPM conforms to a secure cryptoprocessor international standard, ISO/IEC 11889,
and is also the name for a microcontroller chip following that standard.7 Both
software- and hardware-based authentication are subject to supply chain vulnerabili‐
ties, but a hardware root of trust presents special challenges for manufacturers. Like
any hardware, a hardware root of trust must contain testing interfaces to verify integ‐
rity during manufacturing. However, due to the high levels of security required, the
interfaces and test processes must be explicitly designed for the device.

Secure Boot
For many years, each original equipment manufacturer (OEM) had its own basic
input and output system firmware, usually referred to as a BIOS, to perform hard‐
ware initialization during the booting process. Now on most modern computers, the
Unified Extensible Firmware Interface (UEFI) standard has replaced the OEMs’ BIOS
interface between operating systems and firmware. As shown in Figure 10-5, secure
boot is a UEFI security feature that adds a layer of protection to the preboot process
by maintaining a cryptographically signed list of authorized binaries to run, or for‐
bidden binaries to not run, at boot time. If properly designed, this ensures that the
forbidden firmware will not even load.

176 | Chapter 10: Manufacturing and Device Security

Figure 10-5. Normal boot versus secure boot sequence

Secure boot requires UEFI-supported hardware on the device to support the
enhanced boot sequence and cryptographic checks necessary to verify the firmware.
However, due to its widespread adoption, UEFI has become a popular attack surface
because once a threat actor has compromised it with malicious code, they can launch
any code before the operating system or any security software starts.8

Secure Element
A secure element is a chip or component designed to prevent unauthorized access, run a
limited set of applications, and store cryptographic and confidential data. Product design
teams use secure elements, in the form of SIM cards, smart cards, microSD, or chips,
within cell phones, tablets, hardware cryptowallets, wearables, and other IoT devices. The
secure element acts as a vault to protect the applications and data from malware attacks
against the device’s operating system and other components.

Device Authentication
IT, IoT, and OT devices can include security features that prove the authenticity of the
device through incoming requests from an external system or another device. This
ensures that only authorized devices can connect to specific networks, services, or
sites. Device authentication is a basic requirement for zero-trust architecture and
should always be enforced in addition to strong user authentication.

Summary
Software supply chain security extends past the moment software development is com‐
plete. As shown throughout this chapter, compromise during the manufacturing process
can occur in the locations, equipment, systems, and even the final products. Cybersecur‐
ity controls and security measures must be in place for not only the IT environments, but
also for the manufacturing systems and networks. This must include physical security
measures at the manufacturing plants, distribution centers, and suppliers.

From the moment software or firmware leaves development, the authentication and
integrity checks should exist within each step to prove that the code has not been
compromised. With so many participants and threat opportunities in fabrication,

Summary | 177

manufacturing, and logistics, maintaining traceability data is required to confirm the
chain of custody for the product.

Products can be compromised by malicious actors if the proper device security is not in
place, beginning with digital code signing for all embedded software and firmware.
Device security protection measures such as secure boot, secure elements, and device
authentication should be designed into the product and incorporated within the manu‐
facturing process. In Chapter 11, I will discuss how people in manufacturing and all pha‐
ses of the product lifecycle have an enormous impact on the software supply chain.

References
1 Mansur Abilkasimov, Dawn Cappelli, Filipe Beato, and Giulia Moschetta, “Why
Cybersecurity Risks Matter—and How to Raise Security”, World Economic Forum,
March 27, 2023.

2 A printed circuit board (PCB) is without any components or chips; a PCBA con‐
tains all the components and chips required for the board to function.

3 Keith Stouffer, Timothy Zimmerman, Cheeyee Tang, Joshua Lubell, Jeffrey
Cichonski, and John McCarthy, Cybersecurity Framework Manufacturing Profile,
NIST, September 2017.

4 Bill Toulas, “SonicWall Devices Infected by Malware That Survives Firmware
Upgrades”, Bleeping Computer, March 9, 2023.

5 Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson,
“Stealthy Dopant-Level Hardware Trojans: Extended Version”, Journal of Crypto‐
graphic Engineering 4, no. 1 (April 2014): 19–31.

6 Eclypsium, Perilous Peripherals: The Hidden Dangers Inside Windows & Linux
Computers, 2020.

7 “ISO/IEC 11889-1:2015—Trusted Platform Module Library”, ISO, accessed
December 12, 2023.

8 “LoJax UEFI Rootkit Used in Cyberespionage”, Trend Micro, October 1, 2018.

178 | Chapter 10: Manufacturing and Device Security

https://www.weforum.org/agenda/2023/03/why-cybersecurity-in-manufacturing-matters-to-us-all
https://www.weforum.org/agenda/2023/03/why-cybersecurity-in-manufacturing-matters-to-us-all
https://doi.org/10.6028/nist.ir.8183
https://www.bleepingcomputer.com/news/security/sonicwall-devices-infected-by-malware-that-survives-firmware-upgrades
https://www.bleepingcomputer.com/news/security/sonicwall-devices-infected-by-malware-that-survives-firmware-upgrades
https://doi.org/10.1007/s13389-013-0068-0
https://eclypsium.com/wp-content/uploads/2020/02/Eclypsium-Unsigned-Peripheral-Firmware-Research.pdf
https://eclypsium.com/wp-content/uploads/2020/02/Eclypsium-Unsigned-Peripheral-Firmware-Research.pdf
https://www.iso.org/standard/66510.html
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/lojax-uefi-rootkit-used-in-cyberespionage

CHAPTER 11

People in the Software Supply Chain

There is a saying that security is only as good as its weakest link, and as demonstrated
in real-life security breaches, in case after case dating back to the earliest hackers,
humans are consistently the weakest link. We are the ones making decisions on how
the systems are designed, we select or write the code, and we bring it all together to
release it to our customers. Until all code and systems are free of vulnerabilities—
which will never happen—we must expect imperfection but strive to improve our‐
selves in the journey to create more secure applications and products.

Throughout the book, there have been many areas where a person’s role in software
supply chain security is a factor. Different frameworks such as NIST SSDF, ISA/IEC
62443-4-1 SDL, and NERC CIP provide requirements and controls to lower the risk
of compromise. These requirements include training, governance, management, poli‐
cies, and procedures. Your organization should continuously perform the practices
and controls in this chapter—not only once a year or when a new person joins the
organization.

According to a 2022 study by ThriveDX, we have seen cybersecurity awareness grow
to 97% in companies, but general awareness training is just the start.1 One way to
encourage engagement and adoption of cybersecurity practices is through mandatory
cybersecurity training, security champions programs, and internal certifications, as
described in this chapter, or external certifications, as shown in Table 11-1.

179

Table 11-1. External cybersecurity certifications relevant to software supply chain security

Issuing organization Credential abbreviation Credential title
ISACA CISMa Certified Information Security Manager

ISC2 CCSPb Certified Cloud Security Professional

ISC2 CISSPc Certified Information Systems Security Professional

ISC2 CSSLPd Certified Secure Software Lifecycle Professional

CompTIA PenTest+e CompTIA PenTest+

CompTIA Security+f CompTIA Security+

EC-Council CEHg EC-Council Certified Ethical Hacker

a “CISM”, ISACA, accessed February 27, 2023.
b “CCSP—Certified Cloud Security Professional”, ISC2, accessed February 26, 2023.
c “CISSP—Certified Information Systems Security Professional”, ISC2, accessed February 26, 2023.
d “CSSLP—The Industry’s Premier Secure Software Development Certification”, ISC2, accessed February 26, 2023.
e “CompTIA PenTest+”, CompTIA, accessed February 26, 2023.
f “CompTIA Security+”, CompTIA, accessed February 26, 2023.
g “CEH—Certified Ethical Hacker”, EC-Council, accessed February 26, 2023.

To build a security-minded organization, education using books, videos, courses, and
online training for the different roles in the software supply chain security process is
extremely valuable and worth the investment. For example, Todd Barnum’s book The
Cybersecurity Manager’s Guide: The Art of Building Your Security Program lays the
groundwork for a cybersecurity organization, as described in the following section.2

Cybersecurity Organizational Structures
A discussion on people in the software supply chain starts with you and the team you
represent. You may be in IT or OT security, application security, product security,
audit, or compliance. You may not be a dedicated security practitioner, but if you
have the responsibility or accountability for cybersecurity risks or controls in your
organization, you are part of the cybersecurity organizational structure.

Typically an established organization has a cybersecurity leader, often titled chief
information security officer (CISO) or chief security officer (CSO) if the person also
has the security responsibility of the organization’s products or services. The security
team is accountable and responsible for the cybersecurity risks, policies, procedures,
and controls throughout the organization. Often, this team leads the security culture
and awareness campaigns within the organization and addresses questions from
external parties such as customers and government agencies. The security team often
holds external certifications such as CISSP or CISM, and I encourage anyone
responsible for application security or secure development to also obtain the CSSLP
certification.

180 | Chapter 11: People in the Software Supply Chain

https://www.isaca.org/credentialing/cism
https://www.isc2.org/Certifications/CCSP
https://www.isc2.org/Certifications/CISSP
https://www.isc2.org/Certifications/CSSLP
https://www.comptia.org/certifications/pentest
https://www.comptia.org/certifications/security
https://www.eccouncil.org/train-certify/certified-ethical-hacker-ceh

People Control 01
Control PPL-01: Establish and maintain a corporate security organization with expe‐
rienced and well-trained cybersecurity resources. Encourage certification and
continuing education of your security staff.

Security Champions
You can extend the reach of your security organization by creating a security cham‐
pions program. Security champions—people from functional teams who support or
lead others to strengthen an organization’s security posture—act as liaisons between
security and functional teams, encouraging cooperation and communication. Cham‐
pions can come from R&D, IT, operations, procurement, manufacturing, or anywhere
in the organization.

To build a security champions program, first identify people in the organization with
a particular interest in cybersecurity, and provide them with the basic cybersecurity
training mentioned earlier in this chapter. Then, nurture their interest with advanced
cybersecurity training, a security champions community, security working groups,
security projects, and communications regarding security initiatives and activities.

Maintaining the security champions’ interest is an important way to keep the pro‐
gram thriving. You can design internal certifications or badges for champions in
order to recognize their achievements in special topics or skills such as secure design,
secure development, secure testing, penetration testing, and manufacturing security,
to name a few. Some organizations identify internal certifications or rankings using
Olympic levels (e.g., bronze, silver, gold) or martial arts belts (e.g., white, yellow,
brown, black). An approach for leveling up would be to present on security topics,
create security-related innovations, and take on the responsibility of training others
in cybersecurity. A good security champions program will evolve over time and is a
major step to increasing and maintaining cybersecurity awareness throughout the
entire organization.

People Control 02
Control PPL-02: Establish and maintain a security champions community to engage
the organization, raise awareness, expand cybersecurity knowledge, and improve the
adoption of cybersecurity principles and policies.

Security Champions | 181

Cybersecurity Awareness and Training
There is no shortage of cybersecurity awareness content and training courses. Free
materials are obtainable from many places, such as Amazon’s cybersecurity awareness
training, which is available in multiple languages.3 A strong cybersecurity awareness
and training program should include training on social engineering attacks (e.g.,
phishing and all its various forms, email hacking, pretexting, and more, as shown in
Table 11-2).4 The purpose of most attacks is theft or to gain access to accounts, and
for some attacks, there is the chance of installing malicious software on devices.

Table 11-2. Examples of social engineering attacks

Attack type Description
Phishing Email mimicking a trusted source but containing malicious links or attachments, and generally sent

to a wide audience.
Spear phishing Phishing email specifically targeted to an individual using personal information, for example by

mimicking a person’s bank.
Vishing Voice phone calls intended to gather confidential information such as credit cards or

account passwords.
Smishing SMS texts, often containing malicious links, intended to gather confidential information such as

credit cards or account passwords.
Email or SMS hacking By posing as the target, persuades service providers to give control of someone’s email or

phone number.
URL typosquatting Owning URLs with similar spellings or hidden characters in the URL address to mimic trusted

websites and links intended to capture login or personal information.
Pretexting Operating a made-up scenario through email, phone call, or text for the purpose of gathering

confidential information such as credit cards or account passwords.
Scareware Pushing pop-ups, windows, or notifications, sometimes in the form of a virus or malware alert, to

scare a user into taking action.
Access tailgating
(physical breach)

An unauthorized person following an authorized person into a restricted area, creating a
physical breach.

Quid pro quo Offering something for another thing such as a hacked license in exchange for money.

Deepfakea Using a form of artificial intelligence (AI) to create believable, realistic videos, pictures, or audio of
events that never happened to simulate an individual. Poses a threat to the public across national
security, law enforcement, financial, and societal domains.

Disinformation Releasing intentionally false information with the purpose of deceiving its recipients. This differs
from misinformation, which is false information spread without the intention to deceive its
recipients. If a decision is based on false information, then the decision may not be in the interest of
the individual or company for which they work.

a US Department of Homeland Security, Increasing Threat of Deepfake Identities, 2021.

182 | Chapter 11: People in the Software Supply Chain

https://www.dhs.gov/sites/default/files/publications/increasing_threats_of_deepfake_identities_0.pdf

Continuous awareness and training is critical for highlighting new tactics and tech‐
niques performed by malicious actors, and to both improve security and limit
liability, many companies require employees to take specific training annually. Your
organization can also purchase phishing training tools to test awareness by sending
false emails and texts to employees and contractors. These tools can then provide
immediate feedback and guidance to anyone falling prey to misleading links or
requests. You can even customize the false emails and texts to mimic automated
emails from tools your organization owns, such as a GitHub source code
management system.

People Control 03
Control PPL-03: Provide a cybersecurity training and awareness program for all roles
in the organization. Track completion of mandatory and optional courses.

Development Team
Although some university computer science programs have added cybersecurity to
their curricula, those classes are often not mandatory, up to date, or directly associ‐
ated with the field someone may choose, such as cloud development. Until the educa‐
tional systems mandate cybersecurity coursework for all technology fields,
cybersecurity will be treated as an elective rather than a critical part of the software
development lifecycle.

Without cybersecurity education or experience, senior software developers and archi‐
tects can make the same cybersecurity mistakes as a junior software developer. It is
important to require annual development team training and continuing education
since tools, security features, and vulnerabilities evolve quickly. Organizations should
take responsibility for providing up-to-date education, training, and the events neces‐
sary to increase application and product security skills and knowledge, as described
in the following sections.

Secure Development Lifecycle (SDL)
A secure development lifecycle (SDL) is a set of principles that dictate design, coding,
build, release, and maintenance techniques that help ensure finished software has a
minimum level of security. At the time of this book’s publication, two of the most
prominent SDL guidelines are from ISA/IEC 62443-4-1 and NIST SSDF, both
discussed in Chapter 4.

Development Team | 183

These SDL systems can be complex, and adoption should be accompanied by train‐
ing. SDL training is not only for software developers—it should be taken by everyone
accountable for products or applications, including management. If your organiza‐
tion does not have application or product security training available through a third-
party provider, the Linux Foundation, Microsoft, and SAFECode provide free
training materials.5 You can also purchase training from vendors that specialize in
application security.

Secure development is tightly tied to the particular technology platform and software
tools being used, and the SDL training should reflect that. The platforms, such as
cloud, IoT, OT, and mobile, all have specific and unique security requirements.
Therefore, any SDL training must be designed for the software’s specific use cases.

A comprehensive training program for development processes and procedures
should include thorough training on the software workbench tools used in the devel‐
opment lifecycle. An organization should have role-based training curricula specifi‐
cally designed for the activities people perform on the project (e.g., developer, tester,
build manager), and the organization should monitor the completion of the training
curriculum. Ideally, the training should be completed prior to the start of any projects
or activities.

Although secure coding and secure testing are part of a comprehensive SDL training
program, I mention them here to highlight their importance. Training can be found
for secure coding techniques based on their specific programming languages, and
also covering topics such as debugging flags, hardcoded objects, and potential secu‐
rity vulnerabilities. Courses can also include the OWASP Top 10, the top CWEs,
threat modeling, and the MITRE ATT&CK framework. It is very helpful to augment
traditional online or classroom training with hands-on labs where developers have
the opportunity to practice secure coding techniques.

After the code is written, a secure development lifecycle requires code reviews, and
thus training for those reviews should cover topics such as giving effective feedback,
concerns to watch for, and how to identify cybersecurity risk. SDL training should
also include the teaching of proper procedures to ensure software integrity through‐
out the development lifecycle. This training should cover processes such as verifying
signatures and authenticity, access controls for operators and administrators of devel‐
opment systems, and code commits; vetting and managing open source code and
licenses as well as secure testing techniques; using anonymized data sets; and more.

Source Code Management
Protecting source code should be among the highest priorities, as described in Chap‐
ter 7, for any development and operations team. However, there are some basic
approaches involving people that should be observed. First, a tool that allows for log‐
ging, tracing, and undoing any activity related to the source code files (e.g., view,

184 | Chapter 11: People in the Software Supply Chain

download, modifications, deletions, etc.) is essential, and the user information for
that tool should be logged. Second, someone should be monitoring the activity of
users as it relates to source code. Third, clear policies and procedures for configura‐
tion and use of the source code system should be available and well known.

One of the most common mistakes leading to data loss is the accidental storage of
source code and private keys on public code repositories. As part of granting access to
code repositories, development team members must be trained in the specific policy
and procedures for their respective roles in source code management. Procedures
and training should, at a minimum, include uploading code (i.e., code commits or
check-ins), access control, data classification, intellectual property protection, and
open source code management.

DevSecOps and Cloud
Development and security operations (DevSecOps) is an emerging method for
quickly changing, testing, and releasing program features. DevSecOps represents a
significant improvement over prior methodologies in adding security as a core soft‐
ware engineering activity and product release requirement. There is no shortage of
cloud security and DevSecOps training available, such as the training located on
O’Reilly’s Learning platform, but detailed training is dependent on the technologies
used in the organization.

Capture-the-Flag Events
Ongoing awareness and training is key for upskilling development teams with
regards to ever-evolving threats and vulnerabilities. To put learning into practice in a
safe environment, capture-the-flag (CTF) events are staged competitions that give
developers, testers, security engineers, and other technical experts the opportunity to
find hidden, intentionally planted vulnerabilities and weaknesses. Teams or individu‐
als who successfully exploit the vulnerabilities locate the symbolic “flag” that signifies
successful completion for each challenge in the competition.6,7 Challenges are typi‐
cally sorted by difficulty level (e.g., beginner, intermediate, advanced), and the partic‐
ipants score more points based on the difficulty of the challenge and their speed in
solving it.

Organizations can sponsor internal CTFs, or players can join external CTFs spon‐
sored by companies, organizations, and conferences. Development teams can also
dedicate time specifically to penetration testing each other’s code. The competition
and the resulting rewards for effective use of skills can foster camaraderie, a positive
security culture, and continued focus on secure development.

Development Team | 185

Third-Party Suppliers
As part of a robust software supply chain process, third-party and nth-party suppliers
should also have awareness and training as required for their responsibilities. Con‐
tracts and agreements with suppliers should include the ability to review the suppli‐
er’s training program. Suppliers should be able to provide evidence to prove that their
people have been trained on administration duties, data classification, and other
controls noted throughout this book.

Manufacturing and Distribution
Within a manufacturing site or distribution center, there is potential for software or
firmware compromise, including on the production line itself. All personnel in con‐
tact with the systems and processes for creating, building, and assembling products
should be trained to recognize and defend against cybersecurity compromise.

One approach to reducing software supply chain risk in the manufacturing and dis‐
tribution environments is aligning the situations and activities normally seen in these
environments. For example, a campaign on phishing emails is not effective for per‐
sonnel who do not have a corporate email account, but a campaign discussing the
importance of not sharing assigned logins and passwords is relevant when there are
multiple people working on the same production line.

The following is a list of training topics intended for manufacturing and distribution
personnel, systems, and processes:

• Physical security
• Reviewing and confirming the credentials of all personnel on site, especially a

vendor’s field service representative
• OT and IIoT cybersecurity basics
• Login and password management policies for the systems in manufacturing and

distribution, such as HMIs, PLCs, OT, and IIoT
• Malware, ransomware, and viruses
• Data security, intellectual property, and ethics
• Maintaining software and firmware integrity
• Tamper-evident and tamper-proof processes
• Chain-of-custody and logistics security
• Maintenance and patching for cybersecurity vulnerabilities
• Responding to suspected cybersecurity incidents

186 | Chapter 11: People in the Software Supply Chain

When designing a training program, recognize there are special conditions that may
apply to an organization’s manufacturing and distribution staff. These conditions may
include technical knowledge, temporary staff, turnover rate of permanent staff, lan‐
guage requirements, and access to the organization’s systems, such as manufacturing,
test, or lab equipment. When delivering the cybersecurity training, follow the
approach and frequency used for safety training. Repetition of cybersecurity training
is important to maintain diligence and safeguard against cybersecurity compromise.

In addition to the personnel working the production lines, there are other important
roles to train and educate on cybersecurity within the manufacturing and distribution
environments. These roles include manufacturing engineers, industrial engineers,
managers, network engineers, and IT/OT security resources. Training and certifica‐
tions on ISA/IEC 62443 provide comprehension of industrial automation and control
system (IACS) assessments, design, implementation, operations, and maintenance.8

Customer Projects and Field Services
In the circumstance where people are working on a customer’s project, location, or
system, you should require personnel to take specialized cybersecurity training for
any activities that may introduce risk to the customers or compromise the software
supply chain. Training topics can include any of the following:

• Alerting the customer and your organization if any unusual behavior or insecure
situation is detected

• Maintaining safe and secure practices when accessing (physically or virtually) a
location or system

• Only using equipment, software, or procedures approved by the customer and
your organization

• Following procedures, such as scanning or checking the integrity of files, before
using or transferring files

End Users
This chapter would not be complete without mentioning the end user’s part in the
software supply chain. It is unreasonable to expect end users to have a detailed under‐
standing of security practices, so it is imperative that the product teams make it as
easy as possible for them to use software securely.

Education is a great start. Although it is not possible to require end users to take
training or read the documentation, your organization can design the products and
services to increase cybersecurity awareness and be secure by default. End-user secu‐
rity awareness can be increased through focused documentation, tool tips and help
instructions for technical topics, and special videos to describe the security features.

End Users | 187

But even with education, people can make mistakes. Therefore, product teams should
set built-in features and configurations to assist users in securely operating the
product or application.

Summary
The final link in a strong software supply chain is the cybersecurity posture of the
people who take part in it. Detailed training curricula for development teams, suppli‐
ers, manufacturing, and services should be available for the tools, technologies, pro‐
cesses, and procedures in use by everyone. The training and awareness plans can be
overseen by an experienced cybersecurity organization and promoted by security
champions throughout the organization.

Each one of us must be aware of the implications of our actions and strive constantly
to observe correct software supply chain practices. With a holistic view of all parts in
the software supply chain, organizations around the world can increase their security
posture and defend against the malicious actors who threaten our systems, our data,
and our lives.

It has been my honor to lead you through software supply chain security. Thank you
for investing your time and energy toward this very important topic. This is one of
the fastest evolving areas of cybersecurity, with new and changed frameworks, docu‐
ments, regulations, ideas, and links released daily. I encourage you to stay up to date
on software supply chain security by signing up for my newsletter. You can also con‐
tact me using cassie@supplychainsecurity.pro to send updates, feedback, and correc‐
tions, schedule a meeting, or request me as a speaker or guest.

References
1 “Study Shows Increased Maturity in Cybersecurity Awareness Programs and
Higher Level of Security at Most Companies”, Homeland Security Today, September
6, 2022.

2 Todd Barnum, The Cybersecurity Manager’s Guide: The Art of Building Your Secu‐
rity Program (O’Reilly, 2021).

3 Amazon Cybersecurity Awareness Training, accessed February 27, 2023.

4 Social engineering is any attempt or method to manipulate someone into provid‐
ing sensitive or confidential information or access.

5 See “Secure Software Development Fundamentals Courses”, OpenSSF, accessed
December 12, 2023; “Microsoft SDL Core Training Classes”, Microsoft, accessed
December 12, 2023; and “SAFECode Training”, SAFECode, accessed December 12,
2023.

188 | Chapter 11: People in the Software Supply Chain

https://www.supplychainsecurity.pro/sign-up
mailto:cassie@supplychainsecurity.pro
https://www.hstoday.us/subject-matter-areas/cybersecurity/study-shows-increased-maturity-in-cybersecurity-awareness-programs-and-higher-level-of-security-at-most-companies
https://www.hstoday.us/subject-matter-areas/cybersecurity/study-shows-increased-maturity-in-cybersecurity-awareness-programs-and-higher-level-of-security-at-most-companies
https://www.oreilly.com/library/view/the-cybersecurity-managers/9781492076209
https://www.oreilly.com/library/view/the-cybersecurity-managers/9781492076209
https://learnsecurity.amazon.com/en/index.html
https://openssf.org/training/courses
https://www.microsoft.com/en-us/download/details.aspx?id=16420
https://safecode.org/training

6 Flags are typically unique codes, files, source code snippets, or pieces of hardware
on a network.

7 Challenges can be of many types, such as web application vulnerabilities, code
vulnerabilities, reverse engineering, forensic investigations, and cryptography.

8 “ISA/IEC 62443 Cybersecurity Certificate Program”, International Society of
Automation, accessed March 6, 2023.

Summary | 189

https://www.isa.org/certification/certificate-programs/cybersecurity

APPENDIX

Security Controls

Infrastructure Security Controls
Control IS-01: Implement policies, processes, and controls required for creating,
configuring, updating, and operating environments.

Control IS-02: Log and monitor events such as access control, access elevation,
permissions modification, and object execution.

Control IS-03: Limit access to only approved endpoints, require multifactor authenti‐
cation, and integrate with an identity and access management or single sign-on sys‐
tem. Use least-privilege and need-to-know principles for all accounts (e.g., user,
admin, service, application).

Control IS-04: Log and monitor all accounts, whether for users or services, for
unusual behavior and unwarranted uploads or downloads. Log and monitor all
administration account access and actions through security management tools and
security operation centers. Continuously monitor downloads for volume and unusual
behavior patterns.

Control IS-05: Maintain an asset inventory for all tools, scripts, and APIs used by the
development organization. Using origin and provenance information, validate the
authenticity and integrity of the information in the asset inventory.

Control IS-06: Maintain patches and updates, where appropriate, for all applications,
systems, and environments.

Control IS-07: Identify threats to applications, systems, and environments. Imple‐
ment mitigating and compensating controls to prevent threats.

Control IS-08: Prioritize logging, monitoring, and patching of production environ‐
ments. Integrate with SOC/SOAR/SIEM processes and systems.

191

Control IS-09: Document all software distribution paths and locations. Monitor dis‐
tribution locations and deployments for malicious activity.

Control IS-10: Maintain an asset inventory (including tools, applications, services,
and APIs) for the manufacturing and supply chain environments. Secure the environ‐
ments with proper security and compensating controls. Log and monitor all events
for devices and systems that have access to software or firmware.

Control IS-11: Contract agreements must clearly state the cybersecurity responsibili‐
ties for the infrastructure, access, logging, and monitoring throughout the customer
staging process. This includes any customer-specific requirements, personnel access
procedures, and change logs.

Control IS-12: Maintain an asset inventory for all applications, systems, tools, and
scripts used by the service organization. Monitor all service endpoints and tools for
malicious threats.

Secure Development Lifecycle Controls
Control SDL-01: Maintain a secure development lifecycle (SDL) framework and pol‐
icy that requires employees, contractors, and third parties to follow SDL practices for
applications and products.

Control SDL-02: Document and maintain security requirements for applications and
products. Include security requirements that are required by processes, controls,
applicable laws, and regulations.

Control SDL-03: Use secure-by-design and privacy-by-design concepts when design‐
ing applications and products. Conduct threat modeling on all code, services, sys‐
tems, infrastructure, APIs, and protocols.

Control SDL-04: Follow secure coding rules, leverage tools, and mitigate known
weaknesses to develop secure products and applications.

Control SDL-05: Execute security testing using various tools and techniques on
applications and products.

Control SDL-06: Maintain a vulnerability management framework, vulnerability han‐
dling policy, and vulnerability disclosure policy for identifying, evaluating, remediat‐
ing, and disclosing vulnerabilities to external parties.

Source Code, Build, and Deployment Controls
Control SCBD-01: Use only open source that is well supported and available from
legitimate sources. Continuously review all open source code, including updates or
patches, for malicious threats and vulnerabilities. Continuously review the source
code maintainers and contributors for ownership risk.

192 | Security Controls

Control SCBD-02: Review all open source and commercial licenses for agreement or
potential license issues.

Control SCBD-03: Update or patch software, firmware, and code to resolve any
remediated vulnerabilities.

Control SCBD-04: Review all generative AI licenses for property rights concerns.
Review all generated code for risks, threats, vulnerabilities, and lack of quality.

Control SCBD-05: Maintain a set of secure coding standards specific to the platforms
and code languages. Educate developers on secure coding practices.

Control SCBD-06: Use features and plugins for enhancing integrated development
environments (IDEs) and Static Application Security Testing (SAST) tools to identify
secure coding rules and vulnerable coding patterns. Use Software Composition
Analysis (SCA) tools to identify vulnerabilities in open source.

Control SCBD-07: Establish and maintain strict change management policies for
code, systems, applications, and environments.

Control SCBD-08: Document the provenance of source code. Review the country of
origin and provenance, where possible, for security risks in source code.

Control SCBD-09: Internally host all code packages and library dependencies.

Control SCBD-10: Use ephemeral (short-living) environments for build and CI/CD
processes. Perform repeatable and reproducible integrity checks on the build and
deployments.

Control SCBD-11: Sign all code, drivers, scripts, and application files using a trusted
Certificate Authority private key.

Control SCBD-12: Validate software package integrity through the deployment
process by verifying certificates, signatures, and hashes.

Cloud Controls
Control CLD-01: Document the roles and responsibilities of all parties who manage,
administer, and operate cloud environments and applications.

Control CLD-02: Document security controls and requirements for cloud infrastruc‐
ture and applications. Perform assessments to identify gaps and action plans.

Control CLD-03: Control cloud infrastructure and artifacts in source repositories.
Implement change management that only allows changes to be made within
repositories.

Security Controls | 193

Control CLD-04: Secure and test all environments, applications, and connections,
including APIs, with appropriate technologies and access control. Log and monitor
all environments, applications, and connections.

Control CLD-05: Test and scan all aspects of cloud infrastructure, environment, and
software.

Control CLD-06: Scan for and prevent changes directly to production environments.
Deploy cloud environments using the immutable infrastructure technique.

Control CLD-07: Secure and monitor all connections to, and between, cloud
environments, containers, and microservices.

Intellectual Property and Data Controls
Control IPD-01: Maintain a data classification policy with definitions, criteria, and
examples.

Control IPD-02: Maintain an ethics policy that references the data classification pol‐
icy and the compliance responsibility for employees and contractors. Monitor for
compliance with the policies and, when applicable, nondisclosure agreements.

Control IPD-03: Educate all employees and contractors about intellectual property
and data loss risks with training on data classifications, ethics, and compliance.

Control IPD-04: Safeguard confidential and sensitive data in all infrastructure, tech‐
nologies, and systems. Monitor systems and application logs for indicators of data
loss.

Control IPD-05: Implement data security techniques to secure data at rest, in transit,
and in use.

Control IPD-06: Maintain an artificial intelligence (AI) policy for the usage of public
and private large language models (LLMs) in compliance with the data classification
policy and data security requirements.

Control IPD-07: Monitor for data loss of code, secrets, certificates, and keys using
technologies and services.

Control IPD-08: Implement key management systems to secure secrets, tokens, keys,
and other intellectual property.

Control IPD-09: Use secure by design, privacy by design, threat modeling, security
testing, and penetration testing to prevent, detect, and remediate design flaws.

Control IPD-10: Secure all infrastructure, system, and application configurations.
Regularly review configurations and perform threat modeling to identify risks.

194 | Security Controls

Control IPD-11: Design secure APIs and perform threat modeling, security testing,
and penetration testing on APIs.

Control IPD-12: Patch vulnerabilities in infrastructure, systems, and applications to
prevent IP and data loss.

Software Transparency Controls
Control ST-01: Generate a software bill of materials (SBOM) for every production
release of software.

Control ST-02: Establish a vulnerability disclosure process and publish vulnerability
information based on the organization’s disclosure criteria.

Control ST-03: Produce required transparency artifacts such as software attestations.

Control ST-04: Identify and utilize sharing mechanisms for software transparency
artifacts.

Control ST-05: Capture provenance information for software, firmware, and
hardware.

Control ST-06: Prepare and provide transparency packages for requested software,
firmware, and hardware.

Supplier Controls
Control SP-01: Incorporate cybersecurity into the supplier selection and evaluation
processes.

Control SP-02: Research the supplier’s cybersecurity posture for risk and
transparency.

Control SP-03: Request evidence of a supplier’s IT security controls specifically in
defense of software development systems, environments, and infrastructure.

Control SP-04: Evaluate technology leadership at the supplier and request evidence of
a supplier’s application security organizational structure and accountability. Create
relationships with cybersecurity leaders at critical suppliers.

Control SP-05: Request evidence of a supplier’s secure development practices,
frameworks, and controls.

Control SP-06: Request evidence of a supplier’s training program for cybersecurity
awareness, secure development lifecycle processes, secure coding, and security test‐
ing, along with the policy for mandatory training prior to development.

Security Controls | 195

Control SP-07: Request evidence or a demonstration of a supplier’s secure develop‐
ment practices that include threat modeling, secure coding practices, static code
analysis, and security testing.

Control SP-08: Request evidence or a demonstration of a supplier’s build manage‐
ment, DevSecOps, and release management practices, including tools, reports, pro‐
cesses, access controls, approvals, and logs for tools and event management systems.

Control SP-09: Request evidence of a supplier’s scanning, vulnerability management,
and patching processes, including policies, procedures, reports, logs, and patching
service-level agreements.

Control SP-10: Request evidence of a supplier’s management practices and reports for
cloud infrastructure, access controls, keys, configurations, testing, responsibilities,
and service-level agreements.

Control SP-11: Request evidence of a supplier’s development services, including code
quality reports, test reports, and vulnerabilities. When applicable, request developer
information such as locations and evidence of background checks.

Control SP-12: Request evidence of a supplier’s access controls and integrity checks
for any personnel or process that has access to software or firmware.

Control SP-13: Incorporate cyber agreements into the supplier contracting process
that include cyber risk and minimum security standards according to the purchasing
organization’s policies.

Control SP-14: Incorporate cyber topics and monitoring into the existing supplier
management process. Monitoring and reviews should include vulnerabilities, data
breaches, and supply chain issues and may require an audit or reassessment.

Manufacturing and Device Security Controls
Control MDS-01: Validate that manufactured devices were designed, developed,
manufactured, tested, and shipped using information security, cybersecurity, and data
security best practices.

Control MDS-02: Institute clear policies and procedures for access to secured facili‐
ties. Train all personnel on the physical controls and procedures. Maintain and test
physical security controls for the organization and locations.

Control MDS-03: Using the information available in the hardware bill of materials
(HBOM) and software bill of materials (SBOM), authenticate the components and
conduct integrity checks throughout the manufacturing process on any chips, inte‐
grated circuits, components, firmware, and embedded software.

Control MDS-04: Verify that chips, components, and products are authentic before
using them in the manufacturing process.

196 | Security Controls

Control MDS-05: Trace the physical and digital parts, components, and products
through the supply chain to capture the chain of custody for the product.

Control MDS-06: Implement hardware, firmware, and embedded software protection
measures within the device.

People Controls
Control PPL-01: Establish and maintain a corporate security organization with expe‐
rienced and well-trained cybersecurity resources. Encourage certification and con‐
tinuing education of your security staff.

Control PPL-02: Establish and maintain a security champions community to engage
the organization, raise awareness, expand cybersecurity knowledge, and improve the
adoption of cybersecurity principles and policies.

Control PPL-03: Provide a cybersecurity training and awareness program for all roles
in the organization. Track completion of mandatory and optional courses.

Security Controls | 197

Index

A
access control

for code repositories, 43
for labs and test environments, 46

access credentials, stolen, 113
Adobe PDF SBOMs, 133
adversary techniques, curated, 57
Agile, 44

4-1 SDL standard and, 63
guidance for practitioners, 67
management systems for, 44
Microsoft SDL and, 64

AI (artificial intelligence)
AI-BOM, 137
data loss by Microsoft AI research team, 119
generative AI source code, 77
source code generated by, no provenance

information, 144
use of intellectual property and private data

to train models, security concerns with,
116

use with SIEM tools, 107
air gapping, 47
Amazon S3 bucket, misconfiguration leading to

data breach, 121
American Institute of Certified Public Account‐

ants (AICPA)
SOC 2 Type 2 report, 158
suite of system and organization controls

(SOC), 98
analysis technologies (software), 79
Apache Log4j, software vulnerabilities in, 5, 48
API gateway, 104
APIs

API-based attestation sharing, 140
data risks through, 120
securing in cloud environments, 104

Apple, iOS 15.5 code leak, 113
Apple’s Xcode development environment, Xco‐

deGhost malware attack on, 44
application programming interfaces (see APIs)
application security, 55, 57

ISO/IEC 27034 standard, 65
metrics on, 68
testing, 59
tools and techniques for, 60

application stores, 48
applications

SDL training for accountable people, 184
security organization, 154
standards and certifications for, 56

ASCs (application security controls), 65
assessments (see cyber assessments of suppli‐

ers)
asset inventories

for infrastructure security, 45
for manufacturing and supply chain envi‐

ronments, 51
for service systems and tools, 52

ASUS and CCleaner supply chain attacks, 85
attacks

continual updating of attack paths, 56
social engineering, examples of, 182
on supply chains, 1

impacts of software supply chain secu‐
rity breaches, 3-5

UEFI as popular attack surface, 177
audits, right to audit suppliers, 164

199

Australia, software supply chain regulations
and requirements, 6

authentication and authorization
APIs compromised through poor authenti‐

cation, 120
for cloud APIs, 104
device authentication, 177
in secure build management processes, 85

auto industry, insecure APIs, 120
automatic updates, 162
automation, build scripts and, 85

B
backported patches or security fixes, 76
barcodes, 175
bastion hosts, 41
blue green deployment, 106
BOMs (bills of materials), 137

(see also hardware bill of materials; SBOMs)
boot, secure, 176
breaches, 1

caused by people in software supply chain,
179
physical breaches, 182

in cloud environments, 93
through cloud APIs, 104
intellectual property and data loss, 111

data classifications and, 112
malicious actors stealing code-signing keys,

87
of manufacturing sector, 167
preventing by keeping environments

patched, 48
preventing by using software analysis and

secret scanning tools, 80
software supply chain, impacts of, 3-5

Apache Log4j, 5
SolarWinds hack of 2020, 4

SolarWinds hack of 2020, threat actor
inserting malicious code, 42

of suppliers, 149, 160, 163
cyber assessments for, 151
researching, 153
right to audit and assess, 164

supply chain assessment of supplier and
manufacturing security, 168

BSIMM (Building Security in Maturity Model)
from Synopsys, 69

build integration SBOM tools, 132

build integrity
compromised in SolarWinds attack, 81
securing using ephemeral build environ‐

ments, 86
build management, 85-87

authentication and authorization, 85
build scripts and automation, 85
code signing, 86
repeatability and reproducibility, 86
supplier practices in, 157

build platforms
hardened, 81
security controls for, 42

builds
generating SBOMs during, 132
malicious code 3CX desktop application, 42
security controls for, 192

C
C-SCRM (Cybersecurity Supply Chain Risk

Management for Systems and Organiza‐
tions), 26-31

CAIQ (consensus assessment initiative ques‐
tionnaire), 96

Capability Maturity Model Integration
(CMMI), 69

“Capability Maturity Model and Security Met‐
rics”, 68

capture-the-flag (CTF) events, 185
CCleaner and ASUS supply chain attacks, 85
CCM (cloud controls matrix), 96
cell phones

hardware, software, and firmware, possible
attacks on, 3

preventing access to manufacturing net‐
works, 170

certificates
secure management of, 118
from trusted certificate authority, 86
validation of, 88

certifications, 56
external cybersecurity certifications related

to software supply chain security, 179
internal, for security champions, 181

chain of custody, 175
change management, 82

for cloud, 101
ChatGPT, 77

private data leaks through, 116

200 | Index

checksums
comparing for build reproducibility, 86
integrity checks with, 172

chief information security officer (see CISO)
chief product security officer (CPSO), 154
chief security officer (CSO), 180
China, software supply chain security regula‐

tions and requirements, 6
China-based CNVD, 153, 163
CI/CD (continuous integration/continuous

deployment) tools, 44
ephemeral environments for build pro‐

cesses, 86
SLSA framework and, 81

CIA (confidentiality, integrity, and availability),
39

CircleCI, loss of keys, 117
“CIS Software Supply Chain Security Guide”,

81
CISA (Cybersecurity & Infrastructure Agency),

61
SBOM uses and practices, 131
Secure Software Development Attestation

Common Form, 139
CISA ICT SCRM Task Force—Small Business

template, 151
CISA Known Exploited Vulnerabilities (KEV)

Catalog, 153
CISA NRMC—Vendor Supply Chain Risk

Management (SCRM) Template, 151
Cisco Trust Portal, cybersecurity information

on, 153
CISM certification, 180
CISO (chief information security officer), 152,

154, 180
CISSP certification, 180
cloud, 93-100

about, 93
API security, 104
change management, 101
cloud container and deployment testing, 59
cloud management tools, 44
cloud SDL, 65
common cloud models, capabilities, and

connections, 93
dependencies in, 84
deploying immutable infrastructure and

applications in, 105

deployment packages or containerized serv‐
ices for software, 48

evaluating cloud applications and environ‐
ments for potential suppliers, 158

IT security, 153
misconfiguration of cloud data repositories,

119
operating and monitoring, 107
“Practices for Secure Development of Cloud

Applications”, 67
secure design and development for applica‐

tions, 103
securing connections, 106
security controls for, 193
security frameworks, controls, and assess‐

ments, 95-100
American Institute of CPAs SOC 2, 98
Cloud Security Alliance CCM and

CAIQ, 96
Cloud Security Alliance STAR program,

97
ISO/IEC 27001 information security

management systems, 95
security considerations and require‐

ments, 99-100
US FedRAMP, 98

shared security responsibilities, 94
sharing SBOMs through private or SaaS

clouds, 142
site reliability engineering, 108
testing environments and applications, 105
training in DevSecOps and cloud security,

185
Cloud Security Alliance

Cloud Controls Matrix (CCM), 95, 96
Consensus Assessment Initiative Question‐

naire (CAIQ), 95, 96
Security, Trust, Assurance, and Risk (STAR)

Registry, 97
Clubhouse, data leak through API, 120
CMMI (Capability Maturity Model Integra‐

tion), 69
COBIT (see Control Objectives for Information

and Related Technologies (COBIT) 2019)
code

embedded, 76
integrity of, testing in manufacturing, 173
reducing code bloat, 128

code development frameworks, 44

Index | 201

code editors, 44
code integrity in manufacturing, 172
code quality, 78-80

code reviews, 80
software analysis technologies, 79

code quality tools, 59
code repositories

accidental release of code to, 117
cloud, change management in, 102
public, open source code in, 74
security controls for, 42
training development teams on use of, 185

code reviews, 80
line-by-line review of open source code, 74
training development teams for, 184

code signing, 86
firmware public key infrastructure, 176
signature and certificate validation, 88
signing software before distribution, 49

code, software, and firmware integrity (in man‐
ufacturing), 172-174

Codecov hack, 88
collaboration tools, 44
Colonial Pipeline, ransomware attack on, 2
commercial off-the-shelf (COTS) ICT provid‐

ers, 33
commercial source code, 76

software termination and, 162
Common Criteria for Assessing Risk (CCfAR),

31
common security advisory framework (CSAF),

138
monitoring CSAF files of suppliers, 163

common vulnerabilities and exposures (see
CVEs)

Common Vulnerability Scoring System (CVSS),
61

Common Weakness Enumerations (CWEs),
119, 184

compensating controls, 47, 61
Computer Security Resource Center (CSRC), 3
“Concise Guide for Evaluating Open Source

Software” (OpenSSF), 75
configuration drifts, 106
configurations

configuration errors leading to data or intel‐
lectual property loss, 119

security of, 117

consensus assessment initiative questionnaire
(CAIQ), 96

containers, 48, 94, 102
ephemeral build environment, 86
hermetic (no network access) environment

for), 84
network traffic between, 107
security considerations for, 99
security testing, 59
testing, 105

contract manufacturing (CM), 168
Control Objectives for Information and Related

Technologies (COBIT) 2019, 22-24
controls implementing COBIT IT objec‐

tives, 23
governance principles, 22

counterfeits in manufacturing, 174
CPSO (chief product security officer), 154
CREST OVS (OWASP Verification Standard),

56
critical infrastructure, suppliers to, 35
cryptography

cryptographic data in secure elements, 177
data encryption, 115

encryption techniques, 115
public/private key, 86
requirements at the marketing level, 56
secure cryptoprocessor international stan‐

dard, 176
strong encryptions and protocols to secure

connections, 107
CSA (see Cloud Security Alliance)
CSAF (common security advisory framework),

138
monitoring CSAF files of suppliers, 163

CSO (chief security officer), 180
CSPs (cloud service providers)

authorization for service from US
FedRAMP, 98

requirement to pass SOC 2 audits, 98
CSSLP certification, 180
CSV files, SBOMs in, 133
CTF (capture-the-flag) events, 185
customer projects and field services, cyberse‐

curity education for, 187
customer staging for acceptance tests, 51
customer, company, and supplier relationships,

150

202 | Index

CVEs (common vulnerabilities and exposures),
130, 153
monitoring for suppliers, 163
records, 138

CVSS (Common Vulnerability Scoring System),
61

CWEs (Common Weakness Enumerations),
119, 184

cyber agreements (supplier), 160
covering topics in supplier reviews, 164
general cybersecurity items, 160
requirements for software supply chain

security, 160
cyber assessments of suppliers, 151-160

build management, DevSecOps, and release
management, 157

cloud applications and environments, 158
development services, 159
manufacturing, 159
organizations and questionnaires for, 151
product security processes and secure devel‐

opment lifecycle, 155
product/application security organization,

154
responses to, 152
right to assess, 164
scanning, vulnerability management, patch‐

ing, and SLAs, 157
secure development and security testing,

156
security, including environmental security,

153
training, 156

Cyber Kill Chain® framework, 57
cyber physical devices, 46
cyber risk management services, 163
cyber risk monitoring services, 164
Cyber Security Evaluation Tool (CSET), Idaho

National Laboratory, 151
cybersecurity

NIST Cybersecurity Framework (CSF), 24
standards for manufacturers, 169

Cybersecurity & Infrastructure Agency (CISA),
61
SBOM uses and practices, 131

cybersecurity awareness and training, 179, 182
questioning suppliers about training, 156
security champions, 181

Cybersecurity Framework (NIST CSF), 24-25

cybersecurity organizational structures, 180
cybersecurity risk in supply chain, 16

dimensions in C-SCRM framework for
organizations' positive impact on, 27

CycloneDX SBOM format, 133
elements in SBOMs, 134

CycloneDX Tool Center, 132

D
dark web

monitoring for discussions or data in regard
to suppliers, 163

monitoring for sale of configuration data,
120

DAST (dynamic application security testing),
156

data, 111
(see also intellectual property and data)
at rest, in transit, and in use, security of, 115
security controls for, 194

Data Breach Investigations Report (Verizon
2023), 113

data breaches (see breaches)
data loss prevention solutions, 115
data protection, 169
DBoM (digital bill of materials) and sharing

mechanisms, 140
DDoS (distributed denial-of-service) attacks, 48
debugging and testing tools, 44
defect trackers, 44
dependencies

controls for, 81
dependency confusion, 84
trusted, 84
understanding within larger projects, 128

Dependency Management guide (Google), 84
deployment management, 87-89
deployments

deploying immutable infrastructure and
applications in the cloud, 105

deployment locations for software, security
controls for, 48

security controls for, 192
developer environments, 40-42

malware attack on 3CX systems, 43
development lifecycle, potential threats in, 81
development services in supplier cyber assess‐

ments, 159

Index | 203

development teams, cybersecurity education,
183-185
capture-the-flag events, 185
DevSecOps and cloud, 185
source code management, 184

development, secure (see secure development)
development, security, and operations (see

DevSecOps)
device protection measures, 175-177

device authentication, 177
firmware public key infrastructure, 176
hardware root of trust, 176
secure boot, 176
secure elements, 177

device security controls, 196
DevOps, 101
DevSecOps, 101-108

API security in the cloud, 104
change management for cloud, 101
deploying immutable infrastructure and

applications in the cloud, 105
evaluating for potential suppliers, 157
operating and monitoring, 107
secure design and development for cloud

applications, 103
securing connections, 106
site reliability engineering, 108
testing for cloud environments and applica‐

tions, 105
training in, 185

diagnostic tools, 52
digital bill of materials (DBoM) and sharing

mechanisms, 140
distributed denial-of-service (DDoS) attacks, 48
distribution

attacks on, 1
SLSA framework and distributed software,

81
distribution and deployment locations for soft‐

ware
cybersecurity in manufacturing and distri‐

bution, 186
security controls for, 48

download centers, 48
drones, 46
dual-boot operating systems, 40
dynamic application security testing (DAST),

59, 156

E
Eclypsium research on unsigned firmware, 176
Edison Electric Institute, cyber agreement tem‐

plate, 160
electronic manufacturing service (EMS), 168
emails and texts (false) in phishing training,

183
embedded systems

operating systems and frameworks, 76
SDL considerations for, 67

encrypted communications, 41
encryption (see cryptography)
end users (see users)
Endor Lab’s Top 10 Open Source Software

Risks, 119
endpoints, 40

accessing staging environment, 51
API gateway routing service calls to appro‐

priate endpoints, 104
for code repositories and build platforms,

restricting access to, 42
service personnel accessing, 52

Enduring Security Framework (ESF), 81
Enduring Security Framework (ESF)—Supplier

Artifacts and Checklist, 151
Enduring Security Framework document,

Securing the Software Supply Chain: Rec‐
ommended Practices for Software Bill of
Materials Consumption, 129

ephemeral build environments, 86
equipment in manufacturing environments,

170
ethics policy for employees and contractors,

114
EU, software supply chain security regulations,

6
Exploit Prediction Scoring System (EPSS)

model, 61

F
Federal Information Security Management Act

(FISMA), 98
FedRAMP (Federal Risk and Authorization

Management Program), 94, 98
“51 Biggest Document Leaks & Data Breaches

of All Time” (Nira blog), 111
file integrity requirement (ISA/IEC 62443), 56
firmware

204 | Index

integrity in manufacturing environments,
172

normal boot versus secure boot process, 176
supply chain security for, 2

firmware public key infrastructure (PKI), 176
public key for digital certificates, 118

first party, 149
Forum of Incident Response and Security

Teams (FIRST), 61
4-1 SDL (see ISA/IEC 62443 standards)
frameworks and standards (see supply chain

frameworks and standards)
frameworks, embedded, 76
free and open source software (FOSS), 3

tools for locating faults in, 59
fuzz testing, 59

G
generative AI

source code, 77
source code generated by, no provenance

information, 144
GitHub, 74

accidental release of code to, 117
GitHub Copilot, 77

litigation against, 144
Google Dependency Management guide, 84
Google SLSA (Supply-Chain Levels for Soft‐

ware Artifacts) framework, 42, 81
Google, confidential code loss, 117
Google, Graph for Understanding Artifact

Composition, 142
governments, suppliers to, 35
Graph for Understanding Artifact Composition

(GUAC), 142

H
hardware

supply chain security for, 2
UEFI-supported for secure boot, 177

hardware bill of materials (HBOM), 137, 173
hardware root of trust, 176
hardware trusted platform modules (TPMs),

176
hardware, software, and firmware (cell phone),

3
hash algorithms

decryption in certificate validation, 88
MD5, SHA1, and SHA256, 86

HBOM (see hardware bill of materials)
healthcare suppliers, 35
HTTP Strict Transport Security (HSTS), 107
HTTPS, 107
human error, 113
human machine interfaces (HMIs), 170
human-readable SBOMS, 133
hypervisors, 40

I
IaC (infrastructure as code), 41
IACS (industrial automation and control sys‐

tem) assessments, 187
ICs (see integrated circuits)
ICS (industrial control systems), 57

use of ISA/IEC 62443-4-1 SDL by develop‐
ers, 63

ICT (see information and communications
technology (ICT) providers)

Idaho National Laboratory—Cyber Security
Evaluation Tool (CSET), 151

identity and access management (IAM)
not allowing development teams to self-

manage the code repository, 43
IDEs (integrated development environments),

44
feedback from to improve secure coding, 79

IEC (International Electrotechnical Commis‐
sion), 62

IETF (Internet Engineering Task Force), SCITT
working group, 140

IIoT (Industrial IoT), 167
products used by manufacturers, 170

immutable infrastructure, 106
in-toto attestation, 143
industrial automation and control system

(IACS) assessments, 187
industrial control systems (ICS), 57

use of ISA/IEC 62443-4-1 SDL by develop‐
ers, 63

information and communications technology
(ICT) providers, 33
standards of interest, 26

Information Security Continuous Monitoring
(ISCM) tool, 108

information security management systems
(ISMS), 95

Information Systems Audit and Controls Asso‐
ciation (ISACA), 22

Index | 205

infrastructure security controls, 191
infrastructure security in product lifecycle,

39-52
code repositories and build platforms, 42
customer staging for acceptance tests, 51
development tools, 44
labs and test environments, 46
manufacturing and supply chain environ‐

ments, 50
preproduction and production environ‐

ments, 48
service systems and tools, 52
software distribution and deployment loca‐

tions, 48
insider threats, 113
integrated circuits (ICs), 167

logic on, cybersecurity flaws or intentional
compromises on, 167

“Integrating Cybersecurity and Enterprise Risk
Management (ERM)” (NIST IR 8286 series),
16

integrity of source code, 81-85
change management, 82
trusted dependencies, 84
trusted source code, 82

integrity validation in manufacturing, 172
chain of custody, 175
counterfeits, 174
tests for integrity, 173

Intel chipset platforms, intellectual property
and data loss, 114

Intel, confidential code loss, 117
intellectual property and data, 111-121

code theft, 43
data classification, 112
loss of, encrypted communications and, 41
loss through accidental storage of source

code and private keys on public reposi‐
tories, 185

people contributing to theft or loss of, 113
security controls for, 194
technology risks for loss of, 114-121

APIs, 120
configuration errors, 119
data security, 115
design flaws, 118
loss of code, keys, and secrets, 117-118
vulnerabilities in products, systems, or

infrastructure, 121

theft of intellectual property, 1
interactive application security testing (IAST),

59
International Electrotechnical Commission

(IEC), 62
International Organization for Standardization

(ISO), 62
International Society of Automation (ISA), 62
Internet Engineering Task Force (IETF), SCITT

working group, 140
IoT (Internet of Things)

device authentication, 177
devices having unsigned firmware, 176
example test environment, 46
IoT devices, updates and enhancements for

in supplier agreements, 161
SDL considerations for, 67
secure elements in devices, 177
security risks with IoT products, 167
special diagnostic tools, endpoints accessed

by service personnel, 52
standards for, 68

Ireland, software supply chain security require‐
ments, 7

ISA/IEC 62443 standards, 64, 145
file integrity requirements, 56
industrial automation and control system

standards, 169
ISA/IEC 62443-4-1 SDL standard, 62, 155,

161, 179, 183
training in, 187

ISACA/Carnegie Mellon University CMMI, 69
ISO (International Organization for Standardi‐

zation), 62
ISO 20243-1:2023, Open Trusted Technology

Provider Standard (O-TTPS), 174
ISO 27001 certification, 155, 158
ISO 2700x information security, 169
ISO 27k standards, 65
ISO 28000:2022 (security and resilience) stan‐

dard, 34
ISO 31000:2018 Risk Management standard,

18-21
components of, 19
iterative risk management processes, 20

ISO/IEC 11889 secure cryptoprocessor stan‐
dard, 176

ISO/IEC 20243-1:2023 Open Trusted Technol‐
ogy Provider Standard (O-TPPS), 33

206 | Index

ISO/IEC 27001 Information Security Manage‐
ment Systems standard, 24, 95

ISO/IEC 27034 Application Security, 65
ISO/IEC 27034 Application Security Control

(ASC), 66, 161
ISO/IEC 27036 (Information Security for Sup‐

plier Relationships) standard, 34
IT

connectable, security risks with products,
167

device authentication, 177
malware and intrusion detection scanning,

46
manufacturing and distribution personnel,

educating in cybersecurity, 187
products used by manufacturers, 170
security in manufacturing environments,

170
security practices, developer environments

and, 41
security, including environmental security,

153
IT controls framework (COBIT 2019), 22-24

J
Jenkins, zero-day bugs in plugins, 45
JSON files, SBOMs in, 133
jump server, 41

K
key management practices, 118
key management tools, 118
keys, 117

(see also public key infrastructure)
knowledge bases of curated adversary tech‐

niques, 57
known exploited vulnerabilities (KEVs)

beginning with when prioritizing vulnera‐
bilities, 61

CISA Known Exploited Vulnerabilities Cat‐
alog, 153

in cyber agreements with suppliers, 161
Known Exploited Vulnerability (KEV) catalog,

61

L
labeling programs for IoT devices, 67
labs and test environments

security controls for, 46-47
large language models (LLMs), disclosing con‐

fidential data, 116
lateral movement attacks, 47
laws, regulations, guidance, and directives

(software supply chain security), 5-10
licenses

for generative AI source code, 78
for open source code, 75
knowing and complying with, 128

LinkedIn
data leak through API, 120

Linux Foundation, SDL training, 184
LLMs (large language models), disclosing con‐

fidential data, 116
Lockheed Martin, Cyber Kill Chain® frame‐

work, 57
Log4j

remote code execution attacks on, 48
software vulnerabilities in, 5

logging
assessing for potential suppliers, 157
in cloud environments, 107
exfiltration of data from logging libraries,

121
for labs and test environments, 46
for preproduction and production environ‐

ments, 48
low-code or no-code, 77

M
Mac operating systems, automatic updates, 77
machine learning (ML)

ML-BOM, 137
malicious code injections, 42
malware

attack on 3CX Desktop App, 42
included in signed live chat software in

2022, 49
injected during build process, 84
XcodeGhost malware in 2015, 44

manufacturing (suppliers), 159
manufacturing and supply chain environments,

50
manufacturing execution systems (MES), 170
manufacturing security, 167-175, 186

chain of custody, 175
code, software, and firmware integrity,

172-174

Index | 207

counterfeits, 174
tests for integrity, 173

device protection measures, 175-177
firmware public key infrastructure, 176
hardware root of trust, 176
secure boot, 176
secure elements, 177

suppliers and, 168-172
equipment, systems, and network secu‐

rity configurations, 170
manufacturing relationships, 168
physical security, 172
supply chain assessment and verification

of activities, 168
marketing

regulations associated with, 56
requirements for data security, 56

master services agreement (MSA), 160
(see also cyber agreements)

MD5, SHA1, and SHA256 hash algorithms, 86
MDCG 2019-16 (Medical Device Coordination

Group Document—Guidance on Cyberse‐
curity for medical devices), 63

metrics
in CVSS score, 61

(see also CVSS)
product and application security, 68

MFA (see multifactor authentication)
microsegmentation, 47
microservices, 106
Microsoft

configuration errors leading to data leaks,
119

litigation against about generative AI code,
144

Microsoft Excel Binary File Format (XLS)
SBOMs, 133

Microsoft Security Development Lifecycle
(SDL), 64, 161, 184

Microsoft Windows
automatic updates, 77
certificates for files in Windows 11, 87
employee accidentally releasing Windows

11 Notepad, 113
Mimecast, stolen digital certificates, 118
mitigating controls, 47
mitigations, 60
MITRE ATT&CK framework, 57, 103

including in development team SDL train‐
ing, 184

MITRE Common Weakness Enumeration
(CWE) list, 119

MITRE System of Trust (SoT) Framework, 32
monitoring

of cloud environments, 107
examining developer environment logs, 41
practices for labs and test environments, 46
of preproduction and production environ‐

ments, 48
of service endpoints and tools, 52
of software distribution and deployment

locations, 49
of suppliers, 163

MSA (master service agreement), 160
(see also cyber agreements)

multifactor authentication (MFA), 44
in build management, 85
for code repositories and build platforms, 42
in IT security of suppliers, 154
in supplier development services, 159

N
NATF (North American Transmission Forum)

Supply Chain Security Assessment Model,
151

National Institute of Standards and Technology
(see NIST)

National Telecommunications and Information
Administration (see NTIA)

National Vulnerability Database (see China-
based CNVD; NIST National Vulnerability
Database)

NDAs (nondisclosure agreements), 114
need-to-know principles, use with code reposi‐

tories, 43
network security configurations in manufactur‐

ing, 170
New Zealand software supply chain security

regulations and requirements, 7
NFC (near-field communication), 175
Nira blog article “51 Biggest Document Leaks &

Data Breaches of All Time”, 111
NIST (National Institute of Standards and

Technology), 8
Computer Security Resource Center

(CSRC), 3

208 | Index

NIST Cybersecurity Framework (CSF), 24-25,
169

NIST FIPS 140 for cryptographic modules, 56
NIST IR 8183, Cybersecurity Framework Man‐

ufacturing Profile, 169
NIST IR 8286 series (“Integrating Cybersecur‐

ity and Enterprise Risk Management
(ERM)”), 16

NIST National Vulnerability Database (NVD),
138, 153, 163

NIST SP 800-161 Cybersecurity Supply Chain
Risk Management for Systems and Organi‐
zations, 26-31

NIST SP 800-218 SSDF (Secure Software
Development Framework), 9, 62, 64, 81,
161, 179, 183

NIST SP 800-37 Risk Management Framework,
16-18
seven steps in, 18

NIST SP 800-53 Security and Privacy Controls
for Information Systems and Organizations,
29, 98

Node, avoiding dependency confusion in, 84
nondisclosure agreements (NDAs), 114
North American Transmission Forum (NATF)

Supply Chain Security Assessment Model,
151

NotPetya ransomware attack, 50
NTIA (National Telecommunications and

Information Administration), 131
minimum set of elements for SBOMs, 134

NVD (see China-based CNVD; NIST National
Vulnerability Database)

Nvidia, stolen code signing keys, 87

O
OBOM (operational BOM), 137
OEM (original equipment manufacturer), 168

BIOS performing hardware initialization
during boot, 176

ONUS fintech, loss of data through Log4j vul‐
nerability, 121

Open Software Supply Chain Attack Reference
(OSC&R), 57

open source, 74-76
licenses for, 75
mitigating risks of using, 75
operating systems and frameworks, 76
risks involved in using, 74

Secure Supply Chain Consumption Frame‐
work, 74

security controls for, 76
open source software (OSS), 74
The Open Group, 33
Open Trusted Technology Provider Standard

(O-TTPS), 33, 174
Open Worldwide Application Security Project

(see OWASP)
OpenAI, litigation against, 144
OpenAI’s ChatGPT, 77
OpenSSF (Open Source Security Foundation)

Best Practices Badge Program, 83
OpenSSF Scorecard, 75, 83
OpenSSF, “Concise Guide for Evaluating Open

Source Software”, 75
operating systems

dual-boot, 40
embedded or real time, using, 76
possible attacks on, 3

operational BOM (OBOM), 137
operational technology (see OT)
operations

in DevSecOps, 101
uses of software transparency for operators,

129
orchestrator tools (cloud), 106
organizational structures (cybersecurity), 180
origin and provenance information

origin of source code, 82
from vendors, 45

original design manufacturer (ODM), 168
original equipment manufacturer (see OEM)
OSC&R (Open Software Supply Chain Attack

Reference), 57
OSS (open source software), 74
OT (operational technology), 46

device authentication, 177
in manufacturing and distribution, 187
in manufacturing and supply chain environ‐

ments, 50
products used by manufacturers, 170
SDL considerations for, 67
security practices for in manufacturing and

supply chain environments, 51
security risks with products, 167
standards for, 68
updates and enhancements for devices in

supplier agreement, 161

Index | 209

over-the-air (OTA) updates, 162
OWASP (Open Worldwide Application Secu‐

rity Project), 59
OWASP A04:2021—Insecure Design, 119
OWASP API Security Top 10, 104, 120
OWASP CycloneDX working group, 132
OWASP Low-Code/No-Code Top 10 list, 77
OWASP SAMM (Software Assurance Maturity

Model), 69
OWASP Top 10 CWEs, 119, 184
OWASP Top 10 lists, sources on potential

weaknesses, 103
OWASP “Key Management Cheat Sheet”, 118

P
Parler, Clubhouse, and LinkedIn, data leaks

through APIs, 120
patch management

in cyber agreements with suppliers, 162
for labs and test environments, 46
in an OT environment, 51

patches
evaluating patching practices for potential

suppliers, 157
operating systems and frameworks, 76
patching in cloud environments, 102
patching systems to prevent data loss from

vulnerabilities, 121
of production environments, 48
security control for, 57
SLA for in cyber agreements with suppliers,

161
in vulnerability management, 61

PbD (privacy by design), 58
penetration testing, 46, 59

compliance metrics for, 68
people contributing to theft or loss of intellec‐

tual property or data, 113
people in the software supply chain, 179-188

customer projects and field services, cyber‐
security education for, 187

cybersecurity awareness and training, 182
cybersecurity organizational structures, 180
development teams, educating in cyberse‐

curity, 183-185
capture-the-flag events, 185
DevSecOps and cloud, 185
secure development lifecycle, 183
source code management, 184

end users, 187
manufacturing and distribution, cyberse‐

curity training for personnel, 186
security champions, 181
security controls for, 197
third-party suppliers, 186

permissions, 51
in build management processes, 85
for DevSecOps pipeline, 102
excessive, 119
modification of, 42

personal health information (PHI), 112
personal identifiable information (PII), 112
phishing training tools, 183
physical products or components for labs or

testing environments, 46
physical security, 172
PKI (see public key infrastructure)
PLCs (see programmable logic controls)
PowerShell, 52
practices and technology, information about,

145
prebuild SBOM tools, 132
preconfigured environments, 41
preproduction (or staging) environments

security controls for, 48
printed circuit board assembly (PCBA), 167
privacy by design (PbD), 58
privacy protection standards, 169
privacy regulations, identifying violations of,

116
private data, use in training AI models, con‐

cerns with, 116
privileges, 43

(see also permissions)
elevating access privileges, 41
least-privilege controls for preproduction

and production environments, 48
product and application security metrics, 68
product security, 58

(see also application security)
product/application security organization, 154
production environments

alerts and, 41
security controls for, 48

products
SDL training for accountable people, 184
security processes and secure development

lifecycle, 155

210 | Index

programmable logic controls (PLCs), 170
in manufacturing and supply chain environ‐

ments, 50
proprietary code, 76

operating systems and frameworks, 76
provenance, 175

capturing information on going forward, 45
definition in NIST SP 800-161, 29
requiring information from vendors, 45
software provenance information, 143
of source code, 83

public key infrastructure (PKI), 86
firmware PKI, 176
loss of private keys, 117

Purple Book Community of software security
experts, 69

The Purple Book of Software Security, 68
Python

avoiding dependency confusion in, 84
compromised packages downloaded by

users, 84
PyTorch machine-learning library, malicious

version uploaded to PyPI code repository,
84

Q
QR codes, 175
questionnaires for supplier cyber assessment,

151

R
radio frequency identification (see RFID)
ransomware attacks, 1

on manufacturing and supply chain envi‐
ronments, 50

RASP (runtime application security protec‐
tion), 59

real-time operating systems (RTOS), 76
release management, 155

evaluating for potential suppliers, 157
release notes, vulnerability disclosure via, 138
remediations, 60

for critical and high vulnerabilities, SLA for
in supplier agreement, 161

for vulnerabilities, 61
remote access tools, 52

cyberattacks using, 52
remote code execution attacks, 48
repeatability and reproducibility in builds, 86

requirements, laws, regulations, and directives
(software supply chain security), 5-10
security requirements for an SDL, 56

reviews (supplier), 163
RFID (radio frequency identification)

readers in manufacturing environment, 170
tags, aiding in traceability, 175

risk management
dimensions in cyber supply chain, 28
monitoring of dark web by cyber services,

163
for suppliers, 150

risk management frameworks, 15, 35
technology, 16-25

risk monitoring services, 164
risks

C-SCRM risk levels, 30
MITRE System of Trust risk categories, 32
from suppliers, 149
supply chain risk, 2

rolling updates, 106
Ruby, avoiding dependency confusion in, 84
runtime application security protection

(RASP), 59

S
S-SDLC (secure software development lifecy‐

cle), 55
S2C2F (Secure Supply Chain Consumption

Framework), 83
Simplified Requirements document, 74

SaaS (software as a service)
SaaS BOM, 137
sharing SBOMs through SaaS clouds, 142

SAFECode, 67
SDL training, 184

SAMM (Software Assurance Maturity Model)
from OWASP, 69

Samsung, confidential code release, 117
SAST (static application security testing) tools,

80, 156
SBOMs (software bill of materials), 5, 127,

131-137
DBoM and other sharing mechanisms, 142
elements of, 134
Enduring Security Framework document

on, 129
example SBOM graph, 131
formats, 133

Index | 211

generating, methods of, 132
limitations of, 135
monitoring for software library compo‐

nents, 163
software provenance information in, 144
US requirements for, 8
use cases, 128

VEX combined with, 129
validating integrity of code from other par‐

ties, 173
SCA (software composition analysis) tools, 59,

80
Scalable Software Security Maturity Model

(S3M2), 69
scanning, evaluating for potential suppliers, 157
SCITT (Supply Chain Integrity, Transparency,

and Trust), 140
software provenance in SCITT artifact, 144

SCRM (see supply chain risk management)
SCS 9001 Supply Chain Security standard, 33
SDL (see secure development lifecycle)
SDLC (see software development lifecycle)
second party, 149
secrets

loss of, 117
protecting in cloud environments, 102

secrets scanning tool, 80
sector-specific supply chain risk guidelines, 35
secure boot, 176
secure coding, 184
secure coding analysis (SCA) tools, 156
secure design, 58
secure development, 55, 59, 154-157, 159

certifications in, 180
ensuring code quality, 78
EU directive on, 7
in SDL, 56

(see also secure development lifecycle)
SAFECode documents on, 67
suppliers' practices in, 139
UK guidance on, 8

secure development and security testing, 156
secure development lifecycle (SDL), 55-69, 83

advantages of, 55
augmenting an SDLC, 62

ISA/IEC 62443-4-1 SDL, 62
ISO/IEC 27034 Application Security, 65
Microsoft SDL, 64
NIST SSDF, 64

SAFECode, 67
SDL considerations for IoT, OT, and

embedded systems, 67
frameworks used in cyber agreement with

suppliers, 161
ISA/IEC 62443-4-1 SDL standard, 62
key elements of, 56-62

secure design, 58
security requirements, 56
security testing, 59
vulnerability management, 60-61

product and application security metrics, 68
product security processes and, 155
security controls for, 192
training development teams in, 183

Secure DevOps, 65
secure elements, 177
Secure Software Development Attestation

Common Form (CISA), 139
Secure Software Development Framework

(SSDF), 55, 81, 183
NIST SP 800-218 SSDF, 64

secure software development lifecycle (S-
SDLC), 55

Secure Supply Chain Consumption Framework
(S2C2F), 83
Simplified Requirements document, 74

secure testing, 184
“Securing the Software Supply Chain: Recom‐

mended Practices Guide for Developers”, 81
security bulletins or notices, vulnerability dis‐

closure via, 138
security champions, 181
security controls

build management
code signing, 87
repeatability and reproducibility, 86

cloud, 193
APIs, 104
change management, 103
deploying immutable infrastructure and

apps, 106
frameworks, controls, and assessments,

96
secure connections, 107
shared responsibilities, 95
testing, 105

deployment management, 89
infrastructure, 191

212 | Index

for code repositories and build plat‐
forms, 44

for customer staging in acceptance tests,
51

for developer environments, 41
for development tools, 45
for manufacturing and supply chain

environments, 50
for preproduction and production envi‐

ronments, 48
for service systems and tools, 52
for software distribution and deploy‐

ment locations, 48
intellectual property and data, 194

APIs, 120
data classification, 112
data security, 117
design flaws, 119
loss of code, keys, and secrets, 118
people causing theft or loss of, 114
technology risks to, 115
vulnerabilities, 121

manufacturing and device security, 196
chain of custody, 175
counterfeits, 174
device protection measures, 175
integrity tests, 174
physical security, 172
use of information security, cybersecur‐

ity, and data security best practices,
169

in NIST SP 800-161’s Appendices A and B,
29

people, 197
corporate cybersecurity organization,

181
cybersecurity awareness and training,

183
security champions, 181

secure development lifecycle, 55, 192
secure design, 58
secure development, 59, 60
security requirements, 57
vulnerability management, 61

software transparency, 195
provenance information, 144
software transparency artifacts, 143
transparency packages, 146
vulnerability disclosure, 139

source code
generative AI source code, 78
open source code, 75
operating systems or frameworks, 77
secure coding standards, 79
software analysis technologies, 80

source code integrity
change management, 82
trusted dependencies, 84
trusted source code, 84

source code, build, and deployment, 192
suppliers, 195

build management, DevSecOps, and
release management, 157

cloud applications and environments,
158

cyber agreements in supplier contracting
process, 162

cybersecurity in selection and evaluation
of, 153

development services, 159
IT security, 154
manufacturing suppliers, 159
ongoing supplier management, 163
scanning, vulnerability management,

patching, and SLAs, 158
secure development practices, 155, 157
training of employees, 156

Security Engineering portal (Microsoft), 65
security information and event management

(SIEM), 48
tools that find unique security events, 107

security management standards, 34
security operations centers (SOCs), 41

integrating with preproduction and produc‐
tion environments, 48

monitoring for patterns in code commits,
43

security requirements (in SDL), 56
secure development, 59

security testing, 59, 156
Security, Trust, Assurance, and Risk (STAR)

Registry, 97
segmentation, 47
sensors

devices and systems in manufacturing and
supply chain environments, 50

service level agreements (SLAs), 155
for commercial source code, 76

Index | 213

for management of vulnerabilities and
patches by suppliers, 161

for patching critical and high risk vulnera‐
bilities by suppliers, 158

service systems and tools, 52
SHA1, SHA256, and MD5 hash algorithms, 86
shadow IT

in developer environments, 40
in labs and test environments, 46

shared responsibility model, 94
DevSecOps, 101

SIEM (security information and event manage‐
ment), 48
tools that find unique security events, 107

signing software (see code signing)
“Simplified Implementation of the Microsoft

SDL”, 64
single sign-on (SSO) solutions, connecting to

code repository, 43
site reliability engineering (SRE), 108
SLAs (see service level agreements)
SLSA (Supply-Chain Levels for Software Arti‐

facts), 81, 83
in-toto attestation, 143

smartphones
transparency of, 125

SOAR (security orchestration, automation, and
response) systems
integrating with preproduction and produc‐

tion environments, 48
SOC 2 (System and Organization Controls), 98

reports as answer to cyber assessments, 155
SOC 2 Type 2 report, 158
social engineering, 113

examples of attacks, 182
social media

people disclosing confidential information
on, 113

SOCs (security operations centers), 41
integrating with preproduction and produc‐

tion environments, 48
monitoring for patterns in code commits,

43
software analysis technologies, 79
Software Assurance Forum for Excellence in

Code (SAFECode), 67
Software Assurance Maturity Model (SAMM)

from OWASP, 69
software bill of materials (see SBOMs)

software composition analysis (SCA) tools, 59,
80

software development lifecycle (SDLC), 55
software integrity

failures of, 59
in manufacturing, 172
training development teams in, 184

Software Package Data Exchange (SPDX®)
SBOM elements, 134
SBOM formats, 133

software supply chain
attacks on, 57
defined, 3
environments and tools, 39

software supply chain security, 2
defined, 3
impacts of attacks, 3-5
people introducing risk, 113
requirements, laws, regulations, and direc‐

tives, 5-10
software termination process, 162
software transparency, 125-146

other approaches to, 139-146
digital bill of materials and sharing

mechanisms, 140
Graph for Understanding Artifact Com‐

position, 142
in-toto attestation, 143
practices and technology, 145
software provenance, 143
Supply Chain Integrity, Transparency,

and Trust, 140
US CISA Secure Software Development

Attestation Common Form, 139
SBOMs, 131-137
SBOMs and, 127
security controls for, 195
use cases, 127-131

checking if product is affected by known
exploitable vulnerability, 130

for choosers of software, 128
for producers of software, 128
for software operators, 129

vulnerability disclosures, 137-139
SolarWinds hack of 2020, 42, 157

Orion platform, software compromise, 4, 83
problems in development and build envi‐

ronments, 42
theft of Mimecast digital certificates, 118

214 | Index

source code, 73
build management, 85-87
code quality, 78-80

secure coding standards, 78
commercial, 76
deployment management, 87-89
generative AI, 77
integrity of, 81-85
loss of, 117
low-code/no-code, 77
management of, 184
open source, 74-76
proprietary, 76
security controls for, 192
trusted, 82
types of, 73

source code management (SCM) controls
application to code repositories and build

platforms, 42
strong controls for code repositories, 43

SPDX® (Software Package Data Exchange)
SBOM formats, 133
software elements, 134

SRE (site reliability engineering), 108
SSDF (see Secure Software Development

Framework)
SSO (single sign-on) solutions, connecting to

code repository, 43
Stack Overflow, 74
staging environments, 48

customer staging for acceptance tests, 51
Stakeholder-Specific Vulnerability Categoriza‐

tion (SSVC) model, 61
standards for supply chain security, 36

(see also supply chain frameworks and
standards)

STAR (Security, Trust, Assurance, and Risk)
Registry, 97

static application security testing (SAST), 59
static application security testing (SAST) tools,

80, 156
“Stealthy Dopant-Level Hardware Trojans:

Extended Version,”, 172
supplier assessments, vulnerability from, 114
suppliers, 149-164, 186

customer, company, and supplier relation‐
ships, 150

cyber agreements, contracts, and adden‐
dums, 160-162

cyber assessments of, 151-160
build management, DevSecOps, and

release management, 157
cloud applications and environments,

158
development services, 159
IT security, including environmental

security, 153
manufacturing, 159
product security processes and SDL, 155
product/application security organiza‐

tion, 154
questionnaires for, 151
researching supplier cybersecurity, 153
responses to assessment, 152
scanning, vulnerability management,

patching, and SLAs, 157
secure development and security testing,

156
training, 156

defined, 149
ISO/IEC 27036 (Information Security for

Supplier Relationships) standard, 34
main processes involved in supplier man‐

agement, 150
and manufacturing security, 168-172

equipment, systems, and network secu‐
rity configurations, 170

manufacturing relationships, 168
physical security, 172

ongoing management of, 162
monitoring suppliers, 163
right to audit and assess, 164
supplier reviews, 163

security controls for, 195
supply chain frameworks and standards, 15-36

attributes of, 26
considerations for, 35
ISO 28000:2022 (security and resilience)

standard, 34
ISO/IEC 20243-1:2023 Open Trusted Tech‐

nology Provider Standard (O-TTPS), 33
ISO/IEC 27036 (Information Security for

Supplier Relationships) standard, 34
MITRE System of Trust (SoT) Framework,

32
NIST SP 800-161 (C-SCRM), 26-31
SCS 9001 Supply Chain Security standard,

33

Index | 215

technology risk management frameworks,
16-25

UK Supplier Assurance Framework, 31
Supply Chain Integrity, Transparency, and

Trust (SCITT), 140
software provenance information in arti‐

facts, 144
supply chain risk management (SCRM),

defined, 2
supply chain risk, defined, 2
supply chains

defined, 2
security control for supply chain environ‐

ments, 50
terminology, 2
traditional, 1

Supply-Chain Levels for Software Artifacts
(SLSA) framework, 81, 83

SwiftBOM tool, 134
Synopsys BSIMM (Building Security in Matur‐

ity Model), 69
Synopsys, 2022 Open Source Security and Risk

Analysis Report, 74
System and Organization Controls (SOC), 98
System of Trust (SoT) Framework (MITRE), 32

SoT “Risk Model Manager” (RMM) cloud
application, 32

systems
embedded, 76
in manufacturing environments, 170

T
T-Mobile, attack on API in 2022, 104
technology and practices, 145
technology platforms and software tools, SDL

training specific to, 184
technology risk management frameworks,

16-25
Control Objective for Information and

Related Technologies (COBIT) 2019,
22-24

ISO 31000:2018 Risk Management standard,
18-21

NIST Cybersecurity Framework (CSF),
24-25

NIST SP 800-37 Risk Management Frame‐
work, 16-18

technology risks for intellectual property and
data loss, 114-121

APIs, 120
configuration errors, 119
data security, 115
design flaws, 118
loss of code, keys, and secrets, 117
vulnerabilities in products, systems, or

infrastructure, 121
Telecommunications Industry Association

(TIA), 33
termination process (software), 162
test environments, security controls for, 46-47
testing

for cloud environments and applications,
105

security, 59
third party, vulnerabilities reported by, 61
third-party risk

from commercial or open source software, 5
defined, 3

third-party suppliers, suppliers to, 149
threat analysis, 56

potential threats in development lifecycle,
81

threat modeling, 57
including in development team SDL train‐

ing, 184
in secure design, 58
use to identify vulnerabilities in labs or test

environments, 47
3CX Desktop App, malware attack on, 42
TLS (Transport Layer Security), 107
Toyota, confidential code release, 117
TPMs (trusted platform modules), 176
traceability, 175
training requirements for suppliers, 156
transparency, 125

(see also software transparency)
trust

hardware root of trust, 176
MITRE System of Trust (SoT) Framework,

32
trusted dependencies, 84
trusted source code, 82
Twitch security team, data breach, 117
Tylenol poisoning attack, 1
typosquatting (website), 44, 49

U
UK National Cyber Security Centre (NCSC)

216 | Index

Vulnerability Disclosure Toolkit, 137
UK software supply chain security regulations

and requirements, 7
UK Supplier Assurance Framework, 31
Unified Extensible Firmware Interface (UEFI)

standard, 176
updates

automation of security updates in cloud
environments, 106

over-the-air or auto updates in cyber agree‐
ments with suppliers, 162

updating operating systems, 77
US Cybersecurity & Infrastructure Security

Agency (CISA) (see CISA)
US FedRAMP, 95, 98
US Food and Drug Administration’s Section

524(b), 127
US software supply chain regulations and

requirements, 8
US-based NIST NVD (National Vulnerability

Database), 153
users

or customers (second party), 149
part in the software supply chain, 187

V
V&V (verification and validation) security test‐

ing, 60
value-added resellers (VARs), 161
VDRs (vulnerability disclosure reports), 138
Verizon’s 2023 Data Breach Investigations

Report, 113
version control systems, 44
VEX (Vulnerability Exploitability eXchange)

records, vulnerability disclosure in, 138
vulnerability details for SBOMs, 129

virtual machines (VMs), 40
virtual private clouds (VPCs), 40
virtual private networks (VPNs), 41
VMWare Global Incident Response Threat

Report for 2022, 47

vulnerabilities
in cloud computing, 103
in commercial source code, 76
critical vulnerabilities of supplier products,

164
databases of, 153
dependency confusion, 84
finding in capture-the-flag events, 185
known, security requirements from, 56
located by application security tools and

techniques, 60
loss of intellectual property and data

through, 121
in low-code/no-code applications, 77
software vulnerabilities in Apache Log4j, 5

vulnerability disclosure reports (VDRs), 138
Vulnerability Disclosure Toolkit (UK NCSC),

137
vulnerability disclosures, 137-139
Vulnerability Exploitability eXchange (VEX)

records, vulnerability disclosure in, 138
vulnerability details for SBOMs, 129

vulnerability management, 60-61
evaluating for potential suppliers, 157
SLA for in cyber agreements with suppliers,

161

W
W3C provenance specification, 45
WannaCry ransomware attack, 50
web application firewalls (WAF), 104
website typosquatting, 44, 49

X
XcodeGhost malware, 44

Z
zero trust, 47

Index | 217

About the Author
Cassie Crossley is an experienced cybersecurity technology executive in information
technology and product development. She has many years of business and technical
leadership experience in secure software supply chain, cybersecurity, product/appli‐
cation security, software/firmware development, program management, and data pri‐
vacy. Cassie has designed frameworks and operating models for end-to-end security
in software development lifecycles, third-party risk management, cybersecurity gov‐
ernance, and cybersecurity initiatives. She is a member of the CISA/NTIA SBOM
working groups and presents frequently on the topic of SBOMs and software supply
chain security.

Cassie has held positions at Schneider Electric, Ceridian, Hewlett-Packard, McAfee,
Lotus, and IBM. She has an MBA from California State University, Fresno, and a
bachelor of science degree in technical and professional communication with a spe‐
cialization in computer science from Southern Polytechnic State University (now
consolidated into Kennesaw State University).

Colophon
The animal on the cover of Software Supply Chain Security is an Indochinese roller
(Coracias affinis), also known as a Burmese roller. The Indochinese roller is stocky
and brightly colored. Its wings, tail, and belly are covered in various shades of blue,
from sky blue to deep indigo. The bird’s brilliant colors are best observed while it is in
flight with its wings spread wide. It has a long, compressed bill with a hooked tip.

The Indochinese roller can be found across eastern India and Southeast Asia. It pre‐
fers open areas, such as grasslands and agricultural land, and it can also be found in
scrub forests. This bird enjoys perching on trees and wires along roadsides.

Fortunately, Indochinese rollers are considered to be of least concern on endangered
species lists. However, many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Lydekker’s Royal Natural History. The series design is by Edie Freedman, Ellie
Volckhausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://www.oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Supply Chain Security
	Supply Chain Definitions
	Software Supply Chain Security Impacts
	Requirements, Laws, Regulations, and Directives
	Summary

	Chapter 2. Supply Chain Frameworks and Standards
	Technology Risk Management Frameworks
	NIST SP 800-37 Risk Management Framework (RMF)
	ISO 31000:2018 Risk Management
	Control Objectives for Information and Related Technologies (COBIT®) 2019
	NIST Cybersecurity Framework (CSF)

	Supply Chain Frameworks and Standards
	NIST SP 800-161 Cybersecurity Supply Chain Risk Management for Systems and Organizations
	UK Supplier Assurance Framework
	MITRE System of Trust™ (SoT) Framework
	ISO/IEC 20243-1:2023 Open Trusted Technology Provider Standard
	SCS 9001 Supply Chain Security Standard
	ISO 28000:2022 Security and Resilience
	ISO/IEC 27036 Information Security for Supplier Relationships

	Framework and Standards Considerations Summary
	Summary

	Chapter 3. Infrastructure Security in the Product Lifecycle
	Developer Environments
	Code Repositories and Build Platforms
	Development Tools
	Labs and Test Environments
	Preproduction and Production Environments
	Software Distribution and Deployment Locations
	Manufacturing and Supply Chain Environments
	Customer Staging for Acceptance Tests
	Service Systems and Tools
	Summary

	Chapter 4. Secure Development Lifecycle
	Key Elements of an SDL
	Security Requirements
	Secure Design
	Secure Development
	Security Testing
	Vulnerability Management

	Augmenting an SDLC with SDL
	ISA/IEC 62443-4-1 Secure Development Lifecycle
	NIST SSDF
	Microsoft SDL
	ISO/IEC 27034 Application Security
	SAFECode
	SDL Considerations for IoT, OT, and Embedded Systems

	Product and Application Security Metrics
	Summary

	Chapter 5. Source Code, Build, and Deployment Management
	Source Code Types
	Open Source
	Commercial
	Proprietary
	Operating Systems and Frameworks
	Low-Code/No-Code
	Generative AI Source Code

	Code Quality
	Secure Coding Standards
	Software Analysis Technologies
	Code Reviews

	Source Code Integrity
	Change Management
	Trusted Source Code
	Trusted Dependencies

	Build Management
	Authentication and Authorization
	Build Scripts and Automation
	Repeatability and Reproducibility
	Code Signing

	Deployment Management
	Summary

	Chapter 6. Cloud and DevSecOps
	Cloud Frameworks, Controls, and Assessments
	ISO/IEC 27001 Information Security Management Systems
	Cloud Security Alliance CCM and CAIQ
	Cloud Security Alliance STAR Program
	American Institute of CPAs SOC 2
	US FedRAMP
	Cloud Security Considerations and Requirements

	DevSecOps
	Change Management for Cloud
	Secure Design and Development for Cloud Applications
	API Security
	Testing
	Deploying Immutable Infrastructure and Applications
	Securing Connections
	Operating and Monitoring
	Site Reliability Engineering

	Summary

	Chapter 7. Intellectual Property and Data
	Data Classification
	People
	Technology
	Data Security
	Loss of Code, Keys, and Secrets
	Design Flaws
	Configuration Errors
	Application Programming Interfaces (APIs)
	Vulnerabilities

	Summary

	Chapter 8. Software Transparency
	Software Transparency Use Cases
	Software Bill of Materials (SBOM)
	SBOM Formats
	SBOM Elements
	SBOM Limitations
	Additional Bill of Materials (BOMs)

	Vulnerability Disclosures
	Additional Transparency Approaches
	US CISA Secure Software Development Attestation Common Form
	Supply Chain Integrity, Transparency, and Trust (SCITT)
	Digital Bill of Materials and Sharing Mechanisms
	Graph of Understanding Artifact Composition (GUAC)
	In-Toto Attestation
	Software Provenance
	Practices and Technology

	Summary

	Chapter 9. Suppliers
	Cyber Assessments
	Assessment Responses
	Research
	IT Security Including Environmental Security
	Product/Application Security Organization
	Product Security Processes and Secure Development Lifecycle
	Training
	Secure Development and Security Testing
	Build Management, DevSecOps, and Release Management
	Scanning, Vulnerability Management, Patching, and SLAs
	Cloud Applications and Environments
	Development Services
	Manufacturing

	Cyber Agreements, Contracts, and Addendums
	Ongoing Supplier Management
	Monitoring
	Supplier Reviews
	Right to Audit and Assess

	Summary

	Chapter 10. Manufacturing and Device Security
	Suppliers and Manufacturing Security
	Equipment, Systems, and Network Security Configurations
	Physical Security

	Code, Software, and Firmware Integrity
	Tests for Integrity
	Counterfeits

	Chain of Custody
	Device Protection Measures
	Firmware Public Key Infrastructure (PKI)
	Hardware Root of Trust
	Secure Boot
	Secure Element
	Device Authentication

	Summary

	Chapter 11. People in the Software Supply Chain
	Cybersecurity Organizational Structures
	Security Champions
	Cybersecurity Awareness and Training
	Development Team
	Secure Development Lifecycle (SDL)
	Source Code Management
	DevSecOps and Cloud
	Capture-the-Flag Events

	Third-Party Suppliers
	Manufacturing and Distribution
	Customer Projects and Field Services
	End Users
	Summary

	Appendix A. Security Controls
	Infrastructure Security Controls
	Secure Development Lifecycle Controls
	Source Code, Build, and Deployment Controls
	Cloud Controls
	Intellectual Property and Data Controls
	Software Transparency Controls
	Supplier Controls
	Manufacturing and Device Security Controls
	People Controls

	Index
	About the Author
	Colophon

